论文标题

沙发:建立可控制的人椅互动

COUCH: Towards Controllable Human-Chair Interactions

论文作者

Zhang, Xiaohan, Bhatnagar, Bharat Lal, Guzov, Vladimir, Starke, Sebastian, Pons-Moll, Gerard

论文摘要

人类通过在不同的位置进行联系,以许多不同的方式与对象互动,从而创建一个难以学习的高度复杂的运动空间,尤其是在以可控制的方式综合这种人类互动时。现有关于综合人类场景互动的作品的重点是对动作的高级控制,但不考虑对运动的精细控制。在这项工作中,我们研究了在对象上不同接触位置的综合场景相互作用的问题。作为调查这个新问题的测试台,我们将重点放在人椅上的相互作用上,这是最常见的动作之一,在接触方面表现出很大的可变性。我们提出了一个新颖的合成框架沙发,该沙发通过预测手的接触感控制信号来计划运动,然后将其用于合成接触条件的相互作用。此外,我们还用干净的注释(沙发数据集)贡献了一个大型的人头交互数据集。我们的方法对人类对象相互作用的现有方法显示了显着的定量和定性改进。更重要的是,我们的方法可以通过用户指定或自动预测的联系人控制运动。

Humans interact with an object in many different ways by making contact at different locations, creating a highly complex motion space that can be difficult to learn, particularly when synthesizing such human interactions in a controllable manner. Existing works on synthesizing human scene interaction focus on the high-level control of action but do not consider the fine-grained control of motion. In this work, we study the problem of synthesizing scene interactions conditioned on different contact positions on the object. As a testbed to investigate this new problem, we focus on human-chair interaction as one of the most common actions which exhibit large variability in terms of contacts. We propose a novel synthesis framework COUCH that plans ahead the motion by predicting contact-aware control signals of the hands, which are then used to synthesize contact-conditioned interactions. Furthermore, we contribute a large human-chair interaction dataset with clean annotations, the COUCH Dataset. Our method shows significant quantitative and qualitative improvements over existing methods for human-object interactions. More importantly, our method enables control of the motion through user-specified or automatically predicted contacts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源