论文标题
迈向无质量整数高旋转场的立方相互作用顶点的结构
Towards the structure of a cubic interaction vertex for massless integer higher spin fields
论文作者
论文摘要
对于不可约的螺旋场$ s_1,s_2,s_3 $,在$ d $ d $ d $ dimensional minkowski Space中阐明了立方拉格朗日顶点的结构。 $ \ MATHCAL {z} _J $的明确形式以非义务方式输入顶点(在Arxiv中检查:2105.12030 [hep-th] $ j = 1 $)。该解决方案是在BRST方法中使用完整的BRST操作员发现的,该操作员包含所有约束,与提取不可减至的字段(包括跟踪操作员)相对应。
The structure of a cubic Lagrangian vertex is clarified for irreducible fields of helicities $s_1, s_2, s_3$ in a $d$-dimensional Minkowski space. An explicit form of the operator $\mathcal{Z}_j$ entering the vertex in a non-multiplicative way (examined in arXiv:2105.12030[hep-th] for $j=1$) is obtained. The solution is found within the BRST approach with complete BRST operators, which contain all constraints corresponding to the conditions that extract the irreducible fields, including trace operators.