论文标题

紧凑模型的复合布置模型的基础

A basis for the cohomology of compact models of toric arrangements

论文作者

Gaiffi, Giovanni, Papini, Oscar, Siconolfi, Viola

论文摘要

在本文中,我们发现了整数共同体的单基础底座,这些共同体的精美模型的曲折布置模型。在对单个组合的描述中,各种组合物体开始发挥作用:建筑套装,嵌套集和合适的复曲面的粉丝。我们提供了一些通过SageMath程序计算的示例,然后我们专注于与A型根系相关的复曲面布置的情况。在这里,我们基础的组合描述提供了关于对称组的某些Eulerian统计数据之间关系的几何观点。

In this paper we find monomial bases for the integer cohomology rings of compact wonderful models of toric arrangements. In the description of the monomials various combinatorial objects come into play: building sets, nested sets, and the fan of a suitable toric variety. We provide some examples computed via a SageMath program and then we focus on the case of the toric arrangements associated with root systems of type A. Here the combinatorial description of our basis offers a geometrical point of view on the relation between some Eulerian statistics on the symmetric group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源