论文标题
一些$ d^\ ast $ lie lattices等级的亲晶Zeta函数
Pro-isomorphic zeta functions of some $D^\ast$ Lie lattices of even rank
论文作者
论文摘要
我们计算了本地的促态Zeta的功能,除非有限的一个级别的二级型家庭,均匀的live lattices,由不可约束的非线性多项式多项式$ f(x)\ in \ Mathbb {z} [x] [x] $,与grun的家族相对应。结果是用一个有理函数的组合定义的族来表示,在变量反转时满足功能方程。
We compute the local pro-isomorphic zeta functions at all but finitely many primes for a certain family of class-two-nilpotent Lie lattices of even rank, parametrized by irreducible non-linear polynomials $f(x) \in \mathbb{Z} [x]$, that corresponds to a family of groups introduced by Grunewald and Segal. The result is expressed in terms of a combinatorially defined family of rational functions satisfying a functional equation upon inversion of the variables.