论文标题
连接性将毛毛虫和蜘蛛保持在两分图中,最多三个连接
Connectivity keeping caterpillars and spiders in bipartite graphs with connectivity at most three
论文作者
论文摘要
Luo,Tian和Wu(2022)的一个猜想说,对于每个正整数$ k $,以及每条有限的树$ t $,带有两部分$ x $和$ y $(表示$ t = \ t = \ max \ {| x |,| y | \ \ \}) \ cong t $使得$κ(g-v(t'))\ geq k $。在本文中,当$ k = 3 $时,我们确认了毛毛虫的猜想,当$ k \ leq 3 $时蜘蛛。
A conjecture of Luo, Tian and Wu (2022) says that for every positive integer $k$ and every finite tree $T$ with bipartition $X$ and $Y$ (denote $t = \max\{|X|,|Y |\})$, every $k$-connected bipartite graph $G$ with $δ(G) \geq k + t$ contains a subtree $T' \cong T$ such that $κ(G-V (T')) \geq k$. In this paper, we confirm this conjecture for caterpillars when $k=3$ and spiders when $k\leq 3$.