论文标题

非参数幂律替代物

Non-parametric power-law surrogates

论文作者

Moore, Jack Murdoch, Yan, Gang, Altmann, Eduardo G.

论文摘要

幂律分布在极端事件和复杂系统的计算和统计研究中至关重要。生成幂律分布数据的常用技术是首先使用观察到的目标数据来推断规模指数$α$,然后从关联的分布中进行采样。这种方法具有重要的局限性,因为它依赖于固定的$α$(例如,它在测试幂律分布的{\ it家族}方面的适用性有限),以及独立观察结果的假设(例如,它忽略了复杂系统数据中通常存在的时间相关性和其他约束))。在这里,我们提出了一种受约束的替代方法,该方法通过从一组序列中统一选择在离散幂law下观察到的原始序列(即,无论$α$),并显示如何在序列中强加其他约束(例如,markov the Markov prientition promitity均可通过一组序列(即,markov the Markov Triverition promition overy)(无论是$α$)(无论是$α$),从而克服了这些限制。这种非参数方法涉及重新分布观察到的主要因素,以根据幂律模型随机化值,但不限于独立观察或特定的$α$。我们在模拟和真实数据中测试结果,从地震的强度到灾难中的死亡人数。

Power-law distributions are essential in computational and statistical investigations of extreme events and complex systems. The usual technique to generate power-law distributed data is to first infer the scale exponent $α$ using the observed data of interest and then sample from the associated distribution. This approach has important limitations because it relies on a fixed $α$ (e.g., it has limited applicability in testing the {\it family} of power-law distributions) and on the hypothesis of independent observations (e.g., it ignores temporal correlations and other constraints typically present in complex systems data). Here we propose a constrained surrogate method that overcomes these limitations by choosing uniformly at random from a set of sequences exactly as likely to be observed under a discrete power-law as the original sequence (i.e., regardless of $α$) and by showing how additional constraints can be imposed in the sequence (e.g., the Markov transition probability between states). This non-parametric approach involves redistributing observed prime factors to randomize values in accordance with a power-law model but without restricting ourselves to independent observations or to a particular $α$. We test our results in simulated and real data, ranging from the intensity of earthquakes to the number of fatalities in disasters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源