论文标题
$ \ mathbb {r}^n $的子曼属的扭曲几何形状
Twisted geometry for submanifolds of $\mathbb{R}^n$
论文作者
论文摘要
这是对我们最近的一般程序的友好介绍,该程序构建了嵌入式submanifold $ m $ of $ \ mathbb {r}^n $由一组平滑方程确定的$ f^a(x)= 0 $确定的非交通变形。我们使用[Aschieri等人,class。量子重力23(2006),1883年];换向点的产品被Drinfel twist引起的(通常是非交易性的)$ \ star $ - 产品取代。
This is a friendly introduction to our recent general procedure for constructing noncommutative deformations of an embedded submanifold $M$ of $\mathbb{R}^n$ determined by a set of smooth equations $f^a(x)=0$. We use the framework of Drinfel'd twist deformation of differential geometry pioneered in [Aschieri et al., Class. Quantum Gravity 23 (2006), 1883]; the commutative pointwise product is replaced by a (generally noncommutative) $\star$-product induced by a Drinfel'd twist.