论文标题

关于从电影中进行视听对比学习的负面抽样

On Negative Sampling for Audio-Visual Contrastive Learning from Movies

论文作者

Kalayeh, Mahdi M., Ardeshir, Shervin, Liu, Lingyi, Kamath, Nagendra, Chandrashekar, Ashok

论文摘要

利用声音的丰富性和易用性以及听觉线索揭示了有关场景中发生的事情的大量信息,使视听空间成为表示学习的直觉选择。在本文中,我们探讨了从未经过的长期内容(例如电影)中视听自我监督学习的功效。在研究其与常规短形式含量的差异时,我们确定了由电影性质驱动的非I.I.D分布。具体而言,我们发现长期的内容自然包含各种语义概念(语义多样性),其中很大一部分(例如主要角色和环境)经常在整个电影中经常出现(重新出现的语义概念)。此外,电影通常包含具有内容独立的艺术文物,例如调色板或主题音乐,它们是唯一区分电影(非语义一致性)的强烈信号。利用这些观察结果,我们全面研究了在对比度学习设置中强调电影内部阴性抽样的效果。我们的观点不同于先前考虑录像带内抽样的作品的观点,灵感来自于语义持续时间的概念,并在短视频制度中运作。我们的经验发现表明,经过一定的修改,对未经过的长期视频进行培训会产生代表,这些表示与最先进的动作识别和音频分类任务具有竞争性转移。

The abundance and ease of utilizing sound, along with the fact that auditory clues reveal a plethora of information about what happens in a scene, make the audio-visual space an intuitive choice for representation learning. In this paper, we explore the efficacy of audio-visual self-supervised learning from uncurated long-form content i.e movies. Studying its differences with conventional short-form content, we identify a non-i.i.d distribution of data, driven by the nature of movies. Specifically, we find long-form content to naturally contain a diverse set of semantic concepts (semantic diversity), where a large portion of them, such as main characters and environments often reappear frequently throughout the movie (reoccurring semantic concepts). In addition, movies often contain content-exclusive artistic artifacts, such as color palettes or thematic music, which are strong signals for uniquely distinguishing a movie (non-semantic consistency). Capitalizing on these observations, we comprehensively study the effect of emphasizing within-movie negative sampling in a contrastive learning setup. Our view is different from those of prior works who consider within-video positive sampling, inspired by the notion of semantic persistency over time, and operate in a short-video regime. Our empirical findings suggest that, with certain modifications, training on uncurated long-form videos yields representations which transfer competitively with the state-of-the-art to a variety of action recognition and audio classification tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源