论文标题

Bohr-Rogosinski类型的不平等现象,用于凹的单价功能

Bohr-Rogosinski type inequalities for concave univalent functions

论文作者

Allu, Vasudevarao, Arora, Vibhuti

论文摘要

在本文中,我们对Bohr-Rogosinski的不平等和BOHR-ROGOSINSKI现象进行了概括,并针对单位磁盘$ \ Mathbb {D}:= \ in \ Mathbbbb {Z concy os concy} c <z | | | | | | | | | | | | | | | | |域,即补体为凸集的域。所有结果都被证明是锋利的。

In this paper, we generalize and investigate Bohr-Rogosinski's inequalities and the Bohr-Rogosinski phenomenon for the subfamilies of univalent (i.e., one-to-one) functions defined on unit disk $\mathbb{D}:=\{z\in \mathbb{C}:|z|<1 \}$ which maps to the concave domain, i.e., the domain whose complement is a convex set. All the results are proved to be sharp.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源