论文标题

CTR预测中的曝光序列建模的门控小波多分析分析

Gating-adapted Wavelet Multiresolution Analysis for Exposure Sequence Modeling in CTR prediction

论文作者

Xu, Xiaoxiao, Fang, Zhiwei, Yu, Qian, Huang, Ruoran, Fan, \\Chaosheng, Li, Yong, He, Yang, Peng, Changping, Lin, Zhangang, Shao, Jingping

论文摘要

正在积极研究曝光顺序以进行点击率(CTR)预测的用户兴趣建模。但是,现有的暴露序列建模方法带来了广泛的计算负担和忽略噪声问题,从而导致过后延迟以及在线推荐人的性能有限。在本文中,我们建议通过登陆适应的小波多解析分析(GAMA)解决高潜伏期和噪声问题,该分析可以有效地降低极长的暴露顺序,并自适应地捕获具有线性计算复杂性的隐含多维用户兴趣。这是将非参数多分辨率分析技术集成到深度神经网络中以建模用户暴露序列的第一次尝试。大规模基准数据集和实际生产数据集的广泛实验证实了GAMA在曝光序列建模中的有效性,尤其是在冷启动场景中。 GAMA受益于其潜伏期低和高效,已部署在我们真正的大规模工业推荐人中,成功地为数亿多名用户提供服务。

The exposure sequence is being actively studied for user interest modeling in Click-Through Rate (CTR) prediction. However, the existing methods for exposure sequence modeling bring extensive computational burden and neglect noise problems, resulting in an excessively latency and the limited performance in online recommenders. In this paper, we propose to address the high latency and noise problems via Gating-adapted wavelet multiresolution analysis (Gama), which can effectively denoise the extremely long exposure sequence and adaptively capture the implied multi-dimension user interest with linear computational complexity. This is the first attempt to integrate non-parametric multiresolution analysis technique into deep neural networks to model user exposure sequence. Extensive experiments on large scale benchmark dataset and real production dataset confirm the effectiveness of Gama for exposure sequence modeling, especially in cold-start scenarios. Benefited from its low latency and high effecitveness, Gama has been deployed in our real large-scale industrial recommender, successfully serving over hundreds of millions users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源