论文标题
多物种的控制理论建模在饮用水网络中的水质动力学:调查,方法和测试用例
Control-Theoretic Modeling of Multi-Species Water Quality Dynamics in Drinking Water Networks: Survey, Methods, and Test Cases
论文作者
论文摘要
氯是水质(WDN)中广泛使用的消毒剂和替代水质(WQ)监测。基于氯的WQ调节和控制旨在维持无病原体的水。 WDN内的氯残留进化通常使用典型的单物种衰减和反应动力学建模,这些动态仅考虑网络范围内的时空氯浓度。先前的研究通过多物种动力学提出了更高级和准确的描述。本文介绍了多物种水质动力学的许多新型状态空间,控制理论表示。这些表示描述了氯的衰减,反应和转运和虚拟的反应物质,以反映WDN中现实的复杂情况。在运输部分微分方程和非线性反应的普通微分方程的空间和时间限制网格上模拟了这种动力学。为此,本文(i)提供了有关如何制定多物种水质动力学的高保真度驱动的状态空间表示的完整说明,(ii)研究了不同基于欧拉的方案的适用性和性能(Lax-Wendroff,Backward Euler,crank-Nicoler和Lagrangian基于lagrangian的epan and Eptan and Eptan and Eptan)(Methercistion)(Methercistion) 扩大。数值案例研究表明,在合理的假设和局限性下,Lax-Wendroff方案和特征方法的表现优于其他方案。
Chlorine is a widely used disinfectant and proxy for water quality (WQ) monitoring in water distribution networks (WDN). Chlorine-based WQ regulation and control aims to maintain pathogen-free water. Chlorine residual evolution within WDN is commonly modeled using the typical single-species decay and reaction dynamics that account for network-wide, spatiotemporal chlorine concentrations only. Prior studies have proposed more advanced and accurate descriptions via multi-species dynamics. This paper presents a host of novel state-space, control-theoretic representations of multi-species water quality dynamics. These representations describe decay, reaction, and transport of chlorine and a fictitious reactive substance to reflect realistic complex scenarios in WDN. Such dynamics are simulated over space- and time-discretized grids of the transport partial differential equation and the nonlinear reaction ordinary differential equation. To that end, this paper (i) provides a full description on how to formulate a high fidelity model-driven state-space representation of the multi-species water quality dynamics and (ii) investigates the applicability and performance of different Eulerian-based schemes (Lax-Wendroff, backward Euler, and Crank- Nicolson) and Lagrangian-based schemes (method of characteristics) in contrast with EPANET and its EPANET-MSX extension. Numerical case studies reveal that the Lax-Wendroff scheme and method of characteristics outperform other schemes with reliable results under reasonable assumptions and limitations.