论文标题
非局部领域理论中的unuh-Fulling效应:分解的作用
Unruh-Fulling effect in nonlocal field theory: The role of Unruh decomposition
论文作者
论文摘要
我们通过研究数字运算符和Unruh-Dewitt探测器方法来研究一类非本地场理论中的Unruh Fulling效果。与以前的文献不同,我们使用Unruh量化来量化物质字段。这种选择,与标准的Minkowski分解相反,自然地将时间翻译不变性纳入正频率Wightman函数中,从而捕获了系统的热平衡。我们分析了Lorentz非广告和Lorentz不变的非本地理论中无质量的实际标量场的未满足效应。在Lorentz非环境理论中,数量运算符的期望值和检测器的响应函数通过总体乘法因子进行了修改。尽管在洛伦兹不变的非本地理论中,这些量仍然与标准的未达到效果相同。对于Lorentz Nonvariant和Lorentz不变的非局部理论,热浴的温度均未改变。因此,就温度而言,非局部未达到的效果是通用的,而它是通过iNRUH量化得出的,而过渡速率可以修改。
We investigate the Unruh-Fulling effect in a class of nonlocal field theories by examining both the number operator and Unruh-DeWitt detector methods. Unlike in previous literature, we use Unruh quantization to quantize the matter field. Such choice, as oppose to standard Minkowski decomposition, naturally incorporates the time translational invariance in the positive frequency Wightman function and thus captures the thermal equilibrium of the system. We analyze the Unruh-Fulling effect for a massless real scalar field in both the Lorentz noninvariant and Lorentz invariant nonlocal theories. In Lorentz noninvariant nonlocal theory, the expectation value of number operator and the response function of the detector are modified by an overall multiplicative factor. Whereas in Lorentz invariant nonlocal theory these quantities remain identical to those of the standard Unruh-Fulling effect. The temperature of the thermal bath remains unaltered for both the Lorentz noninvariant and Lorentz invariant nonlocal theories. Therefore, in terms of temperature, the nonlocal Unruh-Fulling effect is universal while it is derived via Unruh quantization, whereas the transition rate may be modified.