论文标题

无监督的空间光谱高光谱图像重建和分散几何形状的聚类

Unsupervised Spatial-spectral Hyperspectral Image Reconstruction and Clustering with Diffusion Geometry

论文作者

Cui, Kangning, Li, Ruoning, Polk, Sam L., Murphy, James M., Plemmons, Robert J., Chan, Raymond H.

论文摘要

高光谱图像存储了一百个或多个反射率的光谱带,已成为自然和社会科学中的重要数据源。高光谱图像通常以相对粗糙的空间分辨率大量生成。因此,需要无监督的机器学习算法在高光谱图像中纳入已知结构来自动分析这些图像。这项工作介绍了使用扩散几何(DSIRC)算法的空间光谱图像重建和聚类,用于分区高度混合的高光谱图像。 DSIRC通过形状自适应的重建程序降低了测量噪声。特别是,对于每个像素,dsirc在数据自适应的空间邻域中定位频谱相关的像素,并重建使用其邻居的光谱签名的像素频谱签名。然后,DSIRC与其他高密度高密度,高纯度像素的扩散距离(数据依赖距离度量)的高密度,高纯度像素(数据依赖性距离度量),并将其视为群集示例,使每个标签都具有独特的标签。非模式像素被分配给已经标记的较高密度和纯度的扩散距离邻居的标签。强烈的数值结果表明,通过图像重建合并空间信息可以显着改善像素簇的性能。

Hyperspectral images, which store a hundred or more spectral bands of reflectance, have become an important data source in natural and social sciences. Hyperspectral images are often generated in large quantities at a relatively coarse spatial resolution. As such, unsupervised machine learning algorithms incorporating known structure in hyperspectral imagery are needed to analyze these images automatically. This work introduces the Spatial-Spectral Image Reconstruction and Clustering with Diffusion Geometry (DSIRC) algorithm for partitioning highly mixed hyperspectral images. DSIRC reduces measurement noise through a shape-adaptive reconstruction procedure. In particular, for each pixel, DSIRC locates spectrally correlated pixels within a data-adaptive spatial neighborhood and reconstructs that pixel's spectral signature using those of its neighbors. DSIRC then locates high-density, high-purity pixels far in diffusion distance (a data-dependent distance metric) from other high-density, high-purity pixels and treats these as cluster exemplars, giving each a unique label. Non-modal pixels are assigned the label of their diffusion distance-nearest neighbor of higher density and purity that is already labeled. Strong numerical results indicate that incorporating spatial information through image reconstruction substantially improves the performance of pixel-wise clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源