论文标题

图形上的距离和嵌入到欧几里得空间中的总和

Sums of Distances on Graphs and Embeddings into Euclidean Space

论文作者

Steinerberger, Stefan

论文摘要

令$ g =(v,e)$为有限的连接图。我们考虑了贪婪的顶点选择:给定顶点$ x_1,\ dots,x_k $,以$ x_ {k+1} $为$ x_1,x_k $,以使其最大化现有顶点的距离之和最大化的任何顶点并迭代:我们不断添加“最远程”顶点。该序列中图的顶点出现的频率收敛到具有良好属性的一组概率度量。通常,这些度量的支持是由少数顶点$ m \ ll | v | $给出的。我们证明,这表明图形$ g $最多是“ $ m $ dimensional”,即通过展示$ 1- $ LIPSCHITZ嵌入$ ϕ:G \ rightarrow \ ell^1(\ Mathbb {r}^m)$具有良好的财产。

Let $G=(V,E)$ be a finite, connected graph. We consider a greedy selection of vertices: given a list of vertices $x_1, \dots, x_k$, take $x_{k+1}$ to be any vertex maximizing the sum of distances to the existing vertices and iterate: we keep adding the `most remote' vertex. The frequency with which the vertices of the graph appear in this sequence converges to a set of probability measures with nice properties. The support of these measures is, generically, given by a rather small number of vertices $m \ll |V|$. We prove that this suggests that the graph $G$ is at most '$m$-dimensional' by exhibiting an explicit $1-$Lipschitz embedding $ϕ: G \rightarrow \ell^1(\mathbb{R}^m)$ with good properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源