论文标题

屏蔽联盟学习:适应性的汇总与自适应客户选择

Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection

论文作者

Wan, Wei, Hu, Shengshan, Lu, Jianrong, Zhang, Leo Yu, Jin, Hai, He, Yuanyuan

论文摘要

联合学习(FL)使多个客户能够在保护客户数据隐私的同时协作培训准确的全球模型。但是,FL容易受到恶意参与者的拜占庭攻击。尽管问题引起了很大的关注,但现有的防御措施有几个缺陷:服务器非理性地选择恶意客户端进行聚合,即使在前一轮中被检测到。防御能力对Sybil攻击或在异质数据设置中无效。 为了克服这些问题,我们提出了mab-rfl,这是一种在佛罗里达州稳健聚集的新方法。通过将客户选择建模为扩展的多臂强盗(MAB)问题,我们提出了一种自适应客户选择策略,以选择诚实的客户,更有可能贡献高质量的更新。然后,我们提出了两种方法,以确定Sybil和非陪同攻击中的恶意更新,这是根据每个客户选择决策的奖励,可以准确评估以阻止恶意行为。 MAB-RFL在对潜在良性客户的探索和开发之间达到了令人满意的平衡。广泛的实验结果表明,在不同百分比的攻击者中,MAB-RFL在三种攻击方案中的表现优于现有的防御能力。

Federated learning (FL) enables multiple clients to collaboratively train an accurate global model while protecting clients' data privacy. However, FL is susceptible to Byzantine attacks from malicious participants. Although the problem has gained significant attention, existing defenses have several flaws: the server irrationally chooses malicious clients for aggregation even after they have been detected in previous rounds; the defenses perform ineffectively against sybil attacks or in the heterogeneous data setting. To overcome these issues, we propose MAB-RFL, a new method for robust aggregation in FL. By modelling the client selection as an extended multi-armed bandit (MAB) problem, we propose an adaptive client selection strategy to choose honest clients that are more likely to contribute high-quality updates. We then propose two approaches to identify malicious updates from sybil and non-sybil attacks, based on which rewards for each client selection decision can be accurately evaluated to discourage malicious behaviors. MAB-RFL achieves a satisfying balance between exploration and exploitation on the potential benign clients. Extensive experimental results show that MAB-RFL outperforms existing defenses in three attack scenarios under different percentages of attackers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源