论文标题

两分图的亚类的传播

Transitivity on subclasses of bipartite graphs

论文作者

Paul, Subhabrata, Santra, Kamal

论文摘要

令$ g =(v,e)$是一个图,其中$ v $和$ e $分别为顶点和边缘集。对于两个不相交的子集$ a $和$ b $,我们说,如果每个顶点$ b $都与至少一个顶点$ a $相邻,则说明$ a $ b $。一个顶点分区$π= \ {v_1,v_2,\ ldots,\ ldots,v_k \} $ of $ g $的$ g $称为a \ emph {transitive $ k $ -partition},如果$ v_i $ ponistion $ v_i $ ponistaines $ v_j $ to $ i,j $ i,j $ j $ where $ 1 \ leq i <j i <j i <j i <j \ j \ j \ leq k $。上述分区的最大整数$ k $称为$ g $的\ emph {pransitivitive},它用$ tr(g)$表示。 \ textsc {最大传递性问题}是找到具有最大分区数的给定图的及传递分区。众所周知,\ textsc {最大传递性问题}的决策版本对于一般图是NP完整的,这是Hedetniemi等人证明的。 [图形的迭代着色,\ emph {iNcteeth Mathematics},278,2004]。本文首先通过证明此问题仍然是NP完整的,以实现NP的完整性,从而增强了NP的完整性。另一方面,我们提出了一种线性时间算法,用于查找给定的两分链图的传递性。然后,我们对任何整数$ t $的图表至少至少$ t $。该结果回答了J. T. Hedetniemi和S. T. Hedetniemi提出的两个空旷的问题[图形的传递性,\ emph {j。组合。数学。组合。计算},104,2018]。

Let $G=(V, E)$ be a graph where $V$ and $E$ are the vertex and edge set, respectively. For two disjoint subsets $A$ and $B$, we say $A$ dominates $B$ if every vertex of $B$ is adjacent to at least one vertex of $A$. A vertex partition $π= \{V_1, V_2, \ldots, V_k\}$ of $G$ is called a \emph{transitive $k$-partition} if $V_i$ dominates $V_j$ for all $i,j$ where $1\leq i<j\leq k$. The maximum integer $k$ for which the above partition exists is called \emph{transitivity} of $G$ and it is denoted by $Tr(G)$. The \textsc{Maximum Transitivity Problem} is to find a transitive partition of a given graph with the maximum number of partitions. It was known that the decision version of \textsc{Maximum Transitivity Problem} is NP-complete for general graphs, which was proved by Hedetniemi et al. [Iterated colorings of graphs, \emph{Discrete Mathematics}, 278, 2004]. This paper first strengthens the NP-completeness result by showing that this problem remains NP-complete for perfect elimination bipartite graphs. On the other hand, we propose a linear-time algorithm for finding the transitivity of a given bipartite chain graph. We then characterize graphs with transitivity at least $t$ for any integer $t$. This result answers two open questions posed by J. T. Hedetniemi and S. T. Hedetniemi [The transitivity of a graph, \emph{J. Combin. Math. Combin. Comput}, 104, 2018].

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源