论文标题

基于HINF的校正,可以在高维

Variational Kalman Filtering with Hinf-Based Correction for Robust Bayesian Learning in High Dimensions

论文作者

Das, Niladri, Duersch, Jed A., Catanach, Thomas A.

论文摘要

在本文中,我们通过在线性高斯系统中应用强大的变分和基于HINF-NORM的校正来解决顺序变异推理过滤器(VIF)的收敛问题。随着状态或参数空间的尺寸的增长,使用密度协方差矩阵进行大规模系统的整个卡尔曼更新需要提高存储和计算复杂性,从而使其不切实际。基于平均场高斯变异推理的VIF方法,通过差异近似来减轻这种负担,通常以对角协方差近似形式到协方差。挑战是保留顺序VIF步骤引入的偏差的收敛并纠正。我们希望一个框架可以提高可行性,同时仍然在数据被吸收时保持合理的接近Kalman滤波器。为了实现这一目标,基于HINF-NORM的优化使VIF协方差矩阵呈现以提高鲁棒性。这产生了一种新型的VIF-HINF递归,该递归采用了连续的变分推断和基于HINF的优化步骤。我们探讨了该方法的开发,并研究了一个数值示例,以说明所提出的过滤器的有效性。

In this paper, we address the problem of convergence of sequential variational inference filter (VIF) through the application of a robust variational objective and Hinf-norm based correction for a linear Gaussian system. As the dimension of state or parameter space grows, performing the full Kalman update with the dense covariance matrix for a large scale system requires increased storage and computational complexity, making it impractical. The VIF approach, based on mean-field Gaussian variational inference, reduces this burden through the variational approximation to the covariance usually in the form of a diagonal covariance approximation. The challenge is to retain convergence and correct for biases introduced by the sequential VIF steps. We desire a framework that improves feasibility while still maintaining reasonable proximity to the optimal Kalman filter as data is assimilated. To accomplish this goal, a Hinf-norm based optimization perturbs the VIF covariance matrix to improve robustness. This yields a novel VIF- Hinf recursion that employs consecutive variational inference and Hinf based optimization steps. We explore the development of this method and investigate a numerical example to illustrate the effectiveness of the proposed filter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源