论文标题

Parker太阳能探针在0.5 au下观察到的慢速ICME鞘的结构和波动

Structure and fluctuations of a slow ICME sheath observed at 0.5 au by the Parker Solar Probe

论文作者

Kilpua, E. K. J., Good, S. W., Ala-Lahti, M., Osmane, A., Pal, S., Soljento, J. E., Zhao, L. L., Bale, S.

论文摘要

行星际冠状质量弹出(ICME)之前的鞘是湍流的地球层结构。了解它们的结构和波动对于理解其地球性,在加速颗粒中的作用以及ICMES与太阳风的相互作用很重要。我们研究了2019年3月在0.5 au的帕克太阳能探头的观察结果,在慢速流式井喷CME之前。为了检查MHD尺度的湍流特性,我们计算了波动振幅,磁压缩性,增量的部分差异(PVI),交叉螺旋($σ_C$),剩余能量($σ_R$)和Jensen-Shannon置换置换率和复杂性。鞘由慢速和快速流动组成,这些流量由磁性扇形的15分钟变化分开,与当前板交叉口和速度剪切区相吻合。波动振幅和PVI通过鞘比上游大。波动大部分具有负$σ_r$和鞘中的正$σ_c$,后者表示反肺的传播感。速度剪切区域标志着温度和特定熵的升高,后面的速度更快的流动的局部斑块为正$σ_R$,以及更高的波动振幅和PVI。前面的风和护套中的波动是随机的,鞘的波动显示出比上游更低的熵和更高的复杂性。两部分的护套结构可能是由于扫描和压缩的Heliosperric Current纸(HCS)的经线而产生的。射流加速并加热了鞘后部的风,然后与HCS经线前方的风相互作用。这会导致整个鞘的波动特性差异。因此,慢速ICMES的鞘可以具有复杂的结构,其中波动性能不仅是下游冲击特性,而且在鞘内产生。

Sheaths ahead of interplanetary coronal mass ejections (ICMEs) are turbulent heliospheric structures. Knowledge of their structure and fluctuations is important for understanding their geoeffectiveness, their role in accelerating particles, and the interaction of ICMEs with the solar wind. We studied observations from the Parker Solar Probe of a sheath observed at 0.5 au in March 2019, ahead of a slow streamer blowout CME. To examine the MHD-scale turbulent properties, we calculated fluctuation amplitudes, magnetic compressibility, partial variance of increments (PVI), cross helicity ($σ_c$), residual energy ($σ_r$), and the Jensen-Shannon permutation entropy and complexity. The sheath consisted of slow and fast flows separated by a 15-min change in magnetic sector that coincided with current sheet crossings and a velocity shear zone. Fluctuation amplitudes and PVI were greater through the sheath than upstream. Fluctuations had mostly negative $σ_r$ and positive $σ_c$ in the sheath, the latter indicating an anti-sunward sense of propagation. The velocity shear region marked an increase in temperature and specific entropy, and the faster flow behind had local patches of positive $σ_r$ as well as higher fluctuation amplitudes and PVI. Fluctuations in the preceding wind and sheath were stochastic, with the sheath fluctuations showing lower entropy and higher complexity than upstream. The two-part sheath structure likely resulted from a warp in the heliospheric current sheet (HCS) being swept up and compressed. The ejecta accelerated and heated the wind at the sheath rear, which then interacted with the slower wind ahead of the HCS warp. This caused differences in fluctuation properties across the sheath. Sheaths of slow ICMEs can thus have complex structure where fluctuation properties are not just downstream shock properties, but are generated within the sheath.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源