论文标题
一种尖锐的界面拉格朗日 - 欧拉 - 柔性流体结构互动的方法
A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction
论文作者
论文摘要
本文介绍了一种尖锐的接口方法,用于模拟流体结构相互作用,涉及一般非线性材料模型所描述的柔性体以及跨越广泛的质量密度比。这种新型的柔性体浸入拉格朗日 - 欧拉(ILE)方法结合了浸入式边界(IB)方法的几何和域解决方案的灵活性,其准确性与身体拟合的方法相当,可促进水流和压力流体结构界面。与许多IB方法不同,我们的ILE配方使用Dirichlet-Neumann耦合策略为流体和实心子区域使用不同的动量方程,该策略通过简单的接口条件将流体和实心子问题连接起来。我们使用涉及流体结构接口的两种表示的惩罚方法。这两种表示通过施加运动界面条件的近似Lagrange乘数力连接。这种方法还可以使用多速率时间步进,这使我们能够为流体和结构子问题进行不同的时间步长。我们的流体求解器依赖于浸入式界面方法来使离散表面沿复杂界面施加应力跳跃条件。使用标准的有限元方法通过几乎不可压缩的固体力学配方来确定体积结构网格的动力学。该公式还容易适应可压缩的结构,即固体边界的一部分不接触不可压缩的流体。比较与计算和实验基准进行。我们还通过将其应用于在下腔静脉滤波器中的圆柱血块的运输和捕获来证明该方法的能力。
This paper introduces a sharp-interface approach to simulating fluid-structure interaction involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. We use a penalty method involving two representations of the fluid-structure interface. These two representations are connected by approximate Lagrange multiplier forces that impose kinematic interface conditions. This approach also enables the use of multi-rate time stepping, which allows us to take different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method for discrete surfaces to impose stress jump conditions along complex interfaces. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures for cases in which part of the solid boundary does not contact the incompressible fluid. Comparisons are made with computational and experimental benchmarks. We also demonstrate the capabilities of this methodology by applying it to model the transport and capture of a cylindrical blood clot in an inferior vena cava filter.