论文标题

设计师磁性石墨烯纳米纤维

Designer magnetic topological graphene nanoribbons

论文作者

Song, Shaotang, Ng, Pei Wen, Edalatmanesh, Shayan, Solé, Andrés Pinar, Peng, Xinnan, Kolorenč, Jindřich, Sosnová, Zdenka, Stetsovych, Oleksander, Su, Jie, Li, Jing, Sun, Hongli, Liebig, Alexander, Su, Chenliang, Wu, Jishan, Giessibl, Franz J., Jelinek, Pavel, Chi, Chunyan, Lu, Jiong

论文摘要

磁性和拓扑的相互作用位于凝结物理物理学的核心,它为设计固有的磁性拓扑材料提供了充分的机会,该材料容纳了各种外来拓扑量子量子状态,包括量子异常霍尔效应(QAHE),Axion绝缘体状态和Majorana界面。将此概念扩展到一维(1D)系统,提供了额外的丰富量子自旋物理学,对分子规模的旋转型有很大的希望。尽管在1D石墨烯纳米纤维(GNR)中发现受对称保护的拓扑量子量相的最新进展,但磁性拓扑GNR(MT-GNRS)的理性设计和实现代表了一个盛大的挑战,因为必须解决一个复杂性的多个维度,包括多个层次,包括时间循环对称性(TRS),跨度(trs spatry septry(宽度))相关性。在这里,我们通过统一化学家和物理学家的观点,设计了一条新的途径,涉及实地和相互空间的描述,以设计具有非平凡的电子拓扑和稳健磁性终端的此类MT-GNR。 Classic Clar的规则在概念上提供了一幅概念性的真实空间图片,以预测用终端磁性的封闭壳到开放式壳的过渡,并在一系列波浪状GNR中​​重新打开带有可能的非平凡电子拓扑的乐队差距,并通过在动量空间中的频段结构拓扑的第一原理计算进一步验证,这些原理计算。随着地表合成的推进和分子前体的仔细​​设计,我们通过观察拓扑边缘带制造了这些MT-GNR,其末端PI-MAGNETISM可以使用单尼古尔世自旋传感器直接捕获。此外,可以通过调整MT-GNRS的长度来控制从强抗铁磁到末端旋转之间的弱耦合(类似progaragnetism)的过渡。

The interplay of magnetism and topology lies at the heart of condensed matter physics, which offers great opportunities to design intrinsic magnetic topological materials hosting a variety of exotic topological quantum states including the quantum anomalous Hall effect (QAHE), axion insulator state, and Majorana bound states. Extending this concept to one-dimension (1D) systems offers additional rich quantum spin physics with great promise for molecular-scale spintronics. Despite recent progress in the discovery of symmetry-protected topological quantum phases in 1D graphene nanoribbons (GNRs), the rational design and realization of magnetic topological GNRs (MT-GNRs) represents a grand challenge, as one must tackle multiple dimensions of complexity including time-reversal symmetry (TRS), spatial symmetry (width, edge, end geometry) and many-electron correlations. Here, we devised a new route involving the real- and reciprocal-space descriptions by unifying the chemists and physicists perspectives, for the design of such MT-GNRs with non-trivial electronic topology and robust magnetic terminal. Classic Clar's rule offers a conceptually qualitative real-space picture to predict the transition from closed-shell to open-shell with terminal magnetism, and band gap reopening with possible non-trivial electronic topology in a series of wave-like GNRs, which are further verified by first principle calculations of band-structure topology in a momentum-space. With the advance of on-surface synthesis and careful design of molecular precursors, we have fabricated these MT-GNRs with observation of topological edge bands, whose terminal pi-magnetism can be directly captured using a single-nickelocene spin sensor. Moreover, the transition from strong anti-ferromagnetic to weak coupling (paramagnetism-like) between terminal spins can be controlled by tuning the length of MT-GNRs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源