论文标题
设计师磁性石墨烯纳米纤维
Designer magnetic topological graphene nanoribbons
论文作者
论文摘要
磁性和拓扑的相互作用位于凝结物理物理学的核心,它为设计固有的磁性拓扑材料提供了充分的机会,该材料容纳了各种外来拓扑量子量子状态,包括量子异常霍尔效应(QAHE),Axion绝缘体状态和Majorana界面。将此概念扩展到一维(1D)系统,提供了额外的丰富量子自旋物理学,对分子规模的旋转型有很大的希望。尽管在1D石墨烯纳米纤维(GNR)中发现受对称保护的拓扑量子量相的最新进展,但磁性拓扑GNR(MT-GNRS)的理性设计和实现代表了一个盛大的挑战,因为必须解决一个复杂性的多个维度,包括多个层次,包括时间循环对称性(TRS),跨度(trs spatry septry(宽度))相关性。在这里,我们通过统一化学家和物理学家的观点,设计了一条新的途径,涉及实地和相互空间的描述,以设计具有非平凡的电子拓扑和稳健磁性终端的此类MT-GNR。 Classic Clar的规则在概念上提供了一幅概念性的真实空间图片,以预测用终端磁性的封闭壳到开放式壳的过渡,并在一系列波浪状GNR中重新打开带有可能的非平凡电子拓扑的乐队差距,并通过在动量空间中的频段结构拓扑的第一原理计算进一步验证,这些原理计算。随着地表合成的推进和分子前体的仔细设计,我们通过观察拓扑边缘带制造了这些MT-GNR,其末端PI-MAGNETISM可以使用单尼古尔世自旋传感器直接捕获。此外,可以通过调整MT-GNRS的长度来控制从强抗铁磁到末端旋转之间的弱耦合(类似progaragnetism)的过渡。
The interplay of magnetism and topology lies at the heart of condensed matter physics, which offers great opportunities to design intrinsic magnetic topological materials hosting a variety of exotic topological quantum states including the quantum anomalous Hall effect (QAHE), axion insulator state, and Majorana bound states. Extending this concept to one-dimension (1D) systems offers additional rich quantum spin physics with great promise for molecular-scale spintronics. Despite recent progress in the discovery of symmetry-protected topological quantum phases in 1D graphene nanoribbons (GNRs), the rational design and realization of magnetic topological GNRs (MT-GNRs) represents a grand challenge, as one must tackle multiple dimensions of complexity including time-reversal symmetry (TRS), spatial symmetry (width, edge, end geometry) and many-electron correlations. Here, we devised a new route involving the real- and reciprocal-space descriptions by unifying the chemists and physicists perspectives, for the design of such MT-GNRs with non-trivial electronic topology and robust magnetic terminal. Classic Clar's rule offers a conceptually qualitative real-space picture to predict the transition from closed-shell to open-shell with terminal magnetism, and band gap reopening with possible non-trivial electronic topology in a series of wave-like GNRs, which are further verified by first principle calculations of band-structure topology in a momentum-space. With the advance of on-surface synthesis and careful design of molecular precursors, we have fabricated these MT-GNRs with observation of topological edge bands, whose terminal pi-magnetism can be directly captured using a single-nickelocene spin sensor. Moreover, the transition from strong anti-ferromagnetic to weak coupling (paramagnetism-like) between terminal spins can be controlled by tuning the length of MT-GNRs.