论文标题

与稀有基础相关的最大运算符的尖锐弱类型估计值

Sharp Weak Type Estimates for Maximal Operators associated to Rare Bases

论文作者

Hagelstein, Paul, Oniani, Giorgi, Stokolos, Alex

论文摘要

令$ \ MATHCAL {B} $表示$ \ Mathbb {r}^n $的间隔的非空翻译集合(我们认为这是极少数的),并定义了相关的几何最大运算符$ m_ \ Mathcal {b} $ {b} $ {b} $ by $ the $ $ m_ \ mathcal { \ Mathcal {b}} \ frac {1} {| r |} \ int_r | f |。$$我们在$ \ Mathcal {b} $上提供足够的条件α\} | \ leq c_n \ int _ {\ mathbb {r}^{n}}} \ frac {| f |}α\ left(1+\ log^+\ frac {| f | f |}α\ right)作为推论,我们获得了与几类稀有基础相关的最大算子,包括Córdoba,Soria和Zygmund碱基。

Let $\mathcal{B}$ denote a nonempty translation invariant collection of intervals in $\mathbb{R}^n$ (which we regard as a rare basis), and define the associated geometric maximal operator $M_\mathcal{B}$ by $$M_\mathcal{B}f(x) = \sup_{x \in R \in \mathcal{B}} \frac{1}{|R|}\int_R |f|.$$ We provide a sufficient condition on $\mathcal{B}$ so that the estimate $$ |\{x \in \mathbb{R}^n : M_{\mathcal{B}}f(x) > α\}|\leq C_n \int_{\mathbb{R}^{n}} \frac{|f|}α\left(1+\log^+\frac{|f|}α\right)^{n-1} $$ is sharp. As a corollary we obtain sharp weak type estimates for maximal operators associated to several classes of rare bases including Córdoba, Soria and Zygmund bases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源