论文标题

关于非线性kolmogorov-fokker-Planck类型方程的规律性和存在薄弱的解决方案,具有粗糙的系数

On regularity and existence of weak solutions to nonlinear Kolmogorov-Fokker-Planck type equations with rough coefficients

论文作者

Garain, Prashanta, Nyström, Kaj

论文摘要

我们考虑表单\ begin {qore} \ label {abeqn}(\ partial_t+x \ cdot \ cdot \ nabla_y)u = \ nabla_x u = \ nabla_x \ cdot(a(a \ nabla_x u = nabla_x u,x,y,x,y,y,y,y,y y y y, \ end {qore}函数$ a = a = a(ξ,x,y,t):\ r^m \ times \ r^m \ times \ times \ r^m \ r^m \ times \ r \ to \ r^m $相对于$ $ξ$是连续的,并且相对于$ x,y $和$ x,y $和$ t $。 $ a = a(ξ,x,y,t)$被允许是非线性,但线性增长。我们建立了较高的可集成率和弱点,弱的harnack和harnack不平等的局部界限,并具有定量估计值。此外,我们在某些有限的$ x $,$ y $和$ t $依赖性域中确定了针对Dirichlet问题的弱解决方案的存在和独特性。

We consider nonlinear Kolmogorov-Fokker-Planck type equations of the form \begin{equation}\label{abeqn} (\partial_t+X\cdot\nabla_Y)u=\nabla_X\cdot(A(\nabla_X u,X,Y,t)). \end{equation} The function $A=A(ξ,X,Y,t):\R^m\times\R^m\times\R^m\times\R\to\R^m$ is assumed to be continuous with respect to $ξ$, and measurable with respect to $X,Y$ and $t$. $A=A(ξ,X,Y,t)$ is allowed to be nonlinear but with linear growth. We establish higher integrability and local boundedness of weak sub-solutions, weak Harnack and Harnack inequalities, and H{ö}lder continuity with quantitative estimates. In addition we establish existence and uniqueness of weak solutions to a Dirichlet problem in certain bounded $X$, $Y$ and $t$ dependent domains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源