论文标题

吸收中子星的GRMHD模拟I:非旋转偶极子

GRMHD simulations of accreting neutron stars I: nonrotating dipoles

论文作者

Çıkıntoğlu, Sercan, Ekşi, K. Yavuz, Rezzolla, Luciano

论文摘要

我们研究了被磁性和非旋转中子恒星吸收并弹出物质的一般性动力学。在理想MHD极限内和两个空间维度内的完全相对论磁性水力学(GRMHD)的框架中遵循了动力学。更具体地说,利用数值代码BHAC,我们遵循通过磁化不稳定性的发展驱动到积聚的几何厚物质的演变。通过使用许多模拟,我们可以改变恒星偶性磁场的强度,我们可以自键确定磁层(或alfvén)半径$ r _ {\ rm MSPH} $的位置并研究它如何取决于磁矩$μ$并取决于增燃速率。总体而言,我们恢复了分析性牛顿缩放关系,即$ r _ {\ rm msph} \ propto b^{4/7} $,但也发现对积聚率的依赖性非常薄弱。此外,我们发现材料扭矩与质量差异率线性相关,尽管它们都表现出快速波动。有趣的是,在强磁场模拟中,总扭矩急剧波动,在模拟中观察到的这些不稳定的扭矩可能与X射线脉冲星中观察到的自旋波动有关。

We study the general-relativistic dynamics of matter being accreted onto and ejected by a magnetised and nonrotating neutron star. The dynamics is followed in the framework of fully general relativistic magnetohydrodynamics (GRMHD) within the ideal-MHD limit and in two spatial dimensions. More specifically, making use of the numerical code BHAC, we follow the evolution of a geometrically thick matter torus driven into accretion by the development of a magnetorotational instability. By making use of a number of simulations in which we vary the strength of the stellar dipolar magnetic field, we can determine self-consistently the location of the magnetospheric (or Alfvén) radius $r_{\rm msph}$ and study how it depends on the magnetic moment $μ$ and on the accretion rate. Overall, we recover the analytic Newtonian scaling relation, i.e. $r_{\rm msph} \propto B^{4/7}$, but also find that the dependence on the accretion rate is very weak. Furthermore, we find that the material torque correlates linearly with the mass-accretion rate, although both of them exhibit rapid fluctuations. Interestingly, the total torque fluctuates drastically in strong magnetic field simulations and these unsteady torques observed in the simulations could be associated with the spin fluctuations observed in X-ray pulsars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源