论文标题
与视觉无人机群的协作目标搜索:一种自适应课程嵌入式多阶段增强学习方法
Collaborative Target Search with a Visual Drone Swarm: An Adaptive Curriculum Embedded Multistage Reinforcement Learning Approach
论文作者
论文摘要
对于灾难救援和智能仓库交付系统的应用,非常需要为无人机配备目标搜索功能。可以互相合作并在障碍之间进行操纵的多个智能无人机在较短的时间内完成任务方面具有更大的有效性。但是,在没有事先目标信息的情况下进行协作目标搜索(CTS)极具挑战性,尤其是在视觉无人机群中。在这项工作中,我们提出了一种新型的数据有效的深入增强学习(DRL)方法,称为自适应课程嵌入式多阶段学习(ACEMSL),以应对这些挑战,主要是3-D稀疏奖励空间探索,具有有限的视觉感知和协作行为要求。具体来说,我们将CTS任务分解为几个子任务,包括避免个人障碍,目标搜索和代理间协作,并通过多阶段学习逐步训练代理。同时,设计了自适应嵌入式课程(AEC),其中可以根据培训中的成功率(SR)自适应地调整任务难度水平(TDL)。 ACEMSL允许为视觉无人机群的数据有效培训和个人团队奖励分配。此外,我们通过真实的视觉无人机群部署了训练有素的模型,并执行CTS操作而无需微调。广泛的模拟和现实飞行测试验证了ACEMSL的有效性和概括性。该项目可从https://github.com/ntu-uavg/cts-visual-drone-swarm.git获得。
Equipping drones with target search capabilities is highly desirable for applications in disaster rescue and smart warehouse delivery systems. Multiple intelligent drones that can collaborate with each other and maneuver among obstacles show more effectiveness in accomplishing tasks in a shorter amount of time. However, carrying out collaborative target search (CTS) without prior target information is extremely challenging, especially with a visual drone swarm. In this work, we propose a novel data-efficient deep reinforcement learning (DRL) approach called adaptive curriculum embedded multistage learning (ACEMSL) to address these challenges, mainly 3-D sparse reward space exploration with limited visual perception and collaborative behavior requirements. Specifically, we decompose the CTS task into several subtasks including individual obstacle avoidance, target search, and inter-agent collaboration, and progressively train the agents with multistage learning. Meanwhile, an adaptive embedded curriculum (AEC) is designed, where the task difficulty level (TDL) can be adaptively adjusted based on the success rate (SR) achieved in training. ACEMSL allows data-efficient training and individual-team reward allocation for the visual drone swarm. Furthermore, we deploy the trained model over a real visual drone swarm and perform CTS operations without fine-tuning. Extensive simulations and real-world flight tests validate the effectiveness and generalizability of ACEMSL. The project is available at https://github.com/NTU-UAVG/CTS-visual-drone-swarm.git.