论文标题
线性BiharmonicSchrödinger方程的正和负面边界可控性结果
Positive and negative exact boundary controllability results for the linear Biharmonic Schrödinger equation
论文作者
论文摘要
在本文中,我们研究了线性biharmonicschrödinger方程的精确边界可控性$ i \ i \ partial_ty = - \ partial_x^4Y+γ\ partial_x^2y $在具有铰链的边界条件和边界控制的有界域上的界限和边界控制的第二个空间导数,在{左} eentpoint pointpoint pointpoint上,<0 $γ<0。我们证明,此系统在时间$ t> 0 $中完全可以控制,并且仅当参数$γ$不属于关键可计数的负实数集。这项工作中的分析基于光谱分析以及非谐波傅立叶系列方法。
In this paper, we study the exact boundary controllability of the linear Biharmonic Schrödinger equation $i\partial_ty=-\partial_x^4y+ γ\partial_x^2y$ on a bounded domain with hinged boundary conditions and boundary control acts on the second spatial derivative at the {left} endpoint, where the parameter $γ<0$. We prove that this system is exactly controllable in time $T>0$, if and only if, the parameter $γ$ does not belong to a critical countable set of negative real numbers. The analysis in this work is based on spectral analysis together with the nonharmonic Fourier series method.