论文标题
用下一代地面重力波检测器约束高红移恒星质量原始黑洞
Constraining high-redshift stellar-mass primordial black holes with next-generation ground-based gravitational-wave detectors
论文作者
论文摘要
恒星质量窗口中原始黑洞的可能存在引起了很大的关注,因为它们的合并可能有助于当前和未来的重力波检测。原始的黑洞合并以及源自人口〜III星的黑洞合并,预计将在高红移($ z \ gtrsim 10 $)上占主导地位。但是,原始黑洞合并速率密度预计将用红移单调上升,而人口〜III合并只能在第一颗恒星出生后发生。下一代重力波检测器,例如宇宙探索器〜(CE)和爱因斯坦望远镜〜(ET)可以作为红移的功能在合并速率中访问这种独特的特征,从而可以直接测量两个人群的丰富度,从而使得对原始黑洞的强大约束。我们模拟CE-ET检测器网络观察到的四个月的数据,并执行层次贝叶斯分析以恢复合并率密度。我们发现,如果宇宙没有原始的黑洞,质量为$ \ MATHCAL {O}(10m _ {\ odot})$,则预计的上限$ f _ {\ rm pbh} $作为暗物质能量密度的一小部分,可能是$ f _ f _ f _ {\ rm pb的一小部分\ Mathcal {O}({10^{ - 5}})$,在此质量范围内比当前上限低两个数量级。相反,如果$ f _ {\ rm pbh} \ gtrsim 10^{ - 4} $,则未来引力波观测将排除$ f _ {\ rm pbh} = 0 $在95 \%可信间隔。
The possible existence of primordial black holes in the stellar mass window has received considerable attention because their mergers may contribute to current and future gravitational-wave detections. Primordial black hole mergers, together with mergers of black holes originating from Population~III stars, are expected to dominate at high redshifts ($z\gtrsim 10$). However the primordial black hole merger rate density is expected to rise monotonically with redshift, while Population~III mergers can only occur after the birth of the first stars. Next-generation gravitational-wave detectors such as Cosmic Explorer~(CE) and Einstein Telescope~(ET) can access this distinctive feature in the merger rates as functions of redshift, allowing for a direct measurement of the abundance of the two populations, and hence for robust constraints on the abundance of primordial black holes. We simulate four-months worth of data observed by a CE-ET detector network and perform hierarchical Bayesian analysis to recover the merger rate densities. We find that if the Universe has no primordial black holes with masses of $\mathcal{O}(10M_{\odot})$, the projected upper limit on their abundance $f_{\rm PBH}$ as a fraction of dark matter energy density may be as low as $f_{\rm PBH}\sim \mathcal{O}({10^{-5}})$, about two orders of magnitude lower than current upper limits in this mass range. If instead $f_{\rm PBH}\gtrsim 10^{-4}$, future gravitational wave observations would exclude $f_{\rm PBH}=0$ at the 95\% credible interval.