论文标题
最终状态衰减对多态非整合模型中Landau-Zener转变概率的影响
Effect of decay of the final states on the probabilities of the Landau-Zener transitions in multistate non-integrable models
论文作者
论文摘要
对于在两级系统中的Landau-Zener转变,最初在第一级存活粒子的概率在过渡中生存并保持在第一级,并不取决于第二级是否扩大[V. V.。 M. Akulin和W. P. Schleicht,物理。修订版A {\ bf 46},4110(1992)]。换句话说,无论第二层的扩展如何,开创性的Landau-Zener结果都适用。本文解决了多层Landau-Zener过渡的问题。对于可集成的多态模型而言,过渡不涉及虚拟路径的干扰,可以说扩大的独立性持续存在,我们专注于涉及干扰的非整合模型。对于允许进行分析处理的简单四州模型,我们证明了激发态的衰减会影响生存概率,前提是{\ em最终状态的宽度不同}。
For a Landau-Zener transition in a two-level system, the probability for a particle, initially in the first level, to survive the transition and to remain in the first level, does not depend on whether or not the second level is broadened [V. M. Akulin and W. P. Schleicht, Phys. Rev. A {\bf 46}, 4110 (1992)]. In other words, the seminal Landau-Zener result applies regardless of the broadening of the second level. The same question for the multistate Landau-Zener transition is addressed in the present paper. While for integrable multistate models, where the transition does not involve interference of the virtual paths, it can be argued that the independence of the broadening persists, we focus on non-integrable models involving interference. For a simple four-state model, which allows an analytical treatment, we demonstrate that the decay of the excited states affects the survival probability provided that {\em the widths of the final states are different}.