论文标题
交易艰难的负面因素和真实负面因素:一种辩护的对比协作过滤方法
Trading Hard Negatives and True Negatives: A Debiased Contrastive Collaborative Filtering Approach
论文作者
论文摘要
协作过滤(CF)是一种通过隐式反馈进行推荐的标准方法,可以解决一个半监督的学习问题,其中大多数交互数据都无法观察到。这种性质使现有方法在很大程度上依赖于采矿负面因素提供正确的培训信号。但是,采矿适当的否定性不是免费的午餐,在挖掘信息性的艰苦否定性和避免虚假的底片之间遇到了一个棘手的权衡。我们设计了一种新方法,称为硬度意识的对比协作过滤(HDCCF)来解决困境。它可以从两个方面充分探索艰难的负面因素:1)通过设定目标自适应地锐化了更艰难实例的梯度,以及2)使用新的采样策略隐含地利用项目/用户频率信息。为了避免虚假负面因素,我们开发了一种有原则的方法来提高负面实例的可靠性,并证明该目标是对真正负面分布采样的无偏估计。广泛的实验证明了所提出的模型比现有CF模型和硬采矿方法的优越性。
Collaborative filtering (CF), as a standard method for recommendation with implicit feedback, tackles a semi-supervised learning problem where most interaction data are unobserved. Such a nature makes existing approaches highly rely on mining negatives for providing correct training signals. However, mining proper negatives is not a free lunch, encountering with a tricky trade-off between mining informative hard negatives and avoiding false ones. We devise a new approach named as Hardness-Aware Debiased Contrastive Collaborative Filtering (HDCCF) to resolve the dilemma. It could sufficiently explore hard negatives from two-fold aspects: 1) adaptively sharpening the gradients of harder instances through a set-wise objective, and 2) implicitly leveraging item/user frequency information with a new sampling strategy. To circumvent false negatives, we develop a principled approach to improve the reliability of negative instances and prove that the objective is an unbiased estimation of sampling from the true negative distribution. Extensive experiments demonstrate the superiority of the proposed model over existing CF models and hard negative mining methods.