论文标题

重新审视了对称的非交通托里

Symmetrized non-commutative tori revisited

论文作者

Chakraborty, Sayan

论文摘要

对于$ \ Mathbb {z} _2 $的翻转动作,在$ n $ dimensional norcumutative borus $a_θ上,使用Natsume的精确序列,我们计算$a_θ\ rtimes \ rtimes \ rtimes \ mathbb {z} {z} _2 _2 $的k主理论组。我们方法的新颖性在于,它还提供了明确的基础,即$ \ mathrm {k} _ {0}(a_θ\ rtimes \ mathbb {z} _2),$作为$θ。$作为一种应用程序,用于简单的$ n $ n $ dipimentional-dimensional $a_θ,使用分类的班级,我们确定$ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $ n $。 \ Mathbb {z} _2 $在同构类别的$a_θ中。

For the flip action of $\mathbb{Z}_2$ on an $n$-dimensional noncommutative torus $A_θ,$ using an exact sequence by Natsume, we compute the K-theory groups of $A_θ\rtimes \mathbb{Z}_2$. The novelty of our method is that it also provides an explicit basis of $\mathrm{K}_{0}(A_θ\rtimes \mathbb{Z}_2),$ for any $θ.$ As an application, for a simple $n$-dimensional torus $A_θ,$ using classification techniques, we determine the isomorphism class of $A_θ\rtimes \mathbb{Z}_2$ in terms of the isomorphism class of $A_θ.$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源