论文标题
超过人类的准确性:通过学习课程学习从USG图像中检测胆囊癌
Surpassing the Human Accuracy: Detecting Gallbladder Cancer from USG Images with Curriculum Learning
论文作者
论文摘要
我们探讨了从超声(USG)图像检测基于CNN的模型对胆囊癌(GBC)检测的潜力,因为尚无先前的研究。由于其低成本和可及性,USG是GB疾病最常见的诊断方式。但是,由于传感器的手持性质,由于较低的图像质量,噪声和不同的观点,USG图像对于分析而具有挑战性。我们对问题的详尽研究(SOTA)图像分类技术表明,由于USG图像中存在阴影,它们通常无法学习显着的GB区域。由于噪声或相邻器官引起的虚假纹理,SOTA对象检测技术也达到了较低的精度。我们建议GBCNET解决我们问题中的挑战。 GBCNET首先通过检测GB(而非癌症)来提取感兴趣的区域(ROI),然后使用专门针对GBC分类的新的多尺度二阶合并体系结构。为了有效地处理虚假纹理,我们提出了一种受人视力启发的课程,从而减少了GBCNET中的纹理偏见。实验结果表明,GBCNET明显优于SOTA CNN模型以及专家放射科医生。我们的技术创新也是其他USG图像分析任务的通用性。因此,作为验证,我们还显示了GBCNET从USG图像检测乳腺癌的功效。带有源代码,训练模型和数据的项目页面可在https://gbc-iitd.github.io/gbcnet上找到
We explore the potential of CNN-based models for gallbladder cancer (GBC) detection from ultrasound (USG) images as no prior study is known. USG is the most common diagnostic modality for GB diseases due to its low cost and accessibility. However, USG images are challenging to analyze due to low image quality, noise, and varying viewpoints due to the handheld nature of the sensor. Our exhaustive study of state-of-the-art (SOTA) image classification techniques for the problem reveals that they often fail to learn the salient GB region due to the presence of shadows in the USG images. SOTA object detection techniques also achieve low accuracy because of spurious textures due to noise or adjacent organs. We propose GBCNet to tackle the challenges in our problem. GBCNet first extracts the regions of interest (ROIs) by detecting the GB (and not the cancer), and then uses a new multi-scale, second-order pooling architecture specializing in classifying GBC. To effectively handle spurious textures, we propose a curriculum inspired by human visual acuity, which reduces the texture biases in GBCNet. Experimental results demonstrate that GBCNet significantly outperforms SOTA CNN models, as well as the expert radiologists. Our technical innovations are generic to other USG image analysis tasks as well. Hence, as a validation, we also show the efficacy of GBCNet in detecting breast cancer from USG images. Project page with source code, trained models, and data is available at https://gbc-iitd.github.io/gbcnet