论文标题

具有动态证据融合的值得信赖的多视图分类

Trusted Multi-View Classification with Dynamic Evidential Fusion

论文作者

Han, Zongbo, Zhang, Changqing, Fu, Huazhu, Zhou, Joey Tianyi

论文摘要

现有的多视图分类算法专注于通过利用不同的视图来促进准确性,通常将它们集成到常见的表示任务中。尽管有效,但至关重要的是要确保多视图集成和最终决定的可靠性,尤其是对于嘈杂,腐败和分发数据的可靠性。动态评估不同样本的每种观点的可信度可以提供可靠的集成。这可以通过不确定性估计来实现。考虑到这一点,我们提出了一种新颖的多视图分类算法,称为可信赖的多视图分类(TMC),通过在证据级别上动态整合不同的观点,为多视图学习提供了新的范式。提出的TMC可以通过考虑每种观点的证据来促进分类可靠性。具体而言,我们介绍了变分的dirichlet来表征类概率的分布,该分布与不同观点的证据进行了参数,并与dempster-shafer理论集成在一起。统一的学习框架引起了准确的不确定性,因此,该模型具有可靠性和鲁棒性,以抵抗可能的噪音或腐败。理论和实验结果都证明了所提出的模型在准确性,鲁棒性和可信度方面的有效性。

Existing multi-view classification algorithms focus on promoting accuracy by exploiting different views, typically integrating them into common representations for follow-up tasks. Although effective, it is also crucial to ensure the reliability of both the multi-view integration and the final decision, especially for noisy, corrupted and out-of-distribution data. Dynamically assessing the trustworthiness of each view for different samples could provide reliable integration. This can be achieved through uncertainty estimation. With this in mind, we propose a novel multi-view classification algorithm, termed trusted multi-view classification (TMC), providing a new paradigm for multi-view learning by dynamically integrating different views at an evidence level. The proposed TMC can promote classification reliability by considering evidence from each view. Specifically, we introduce the variational Dirichlet to characterize the distribution of the class probabilities, parameterized with evidence from different views and integrated with the Dempster-Shafer theory. The unified learning framework induces accurate uncertainty and accordingly endows the model with both reliability and robustness against possible noise or corruption. Both theoretical and experimental results validate the effectiveness of the proposed model in accuracy, robustness and trustworthiness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源