论文标题
超导Qubits链上的噪声边缘模式
Noise-resilient Edge Modes on a Chain of Superconducting Qubits
论文作者
论文摘要
量子系统的固有对称性可以保护其原本脆弱的状态。利用这种保护需要测试其稳健性,以防止不受控制的环境相互作用。使用47个超导码位,我们实现了一维踢的Ising模型,该模型以$ \ Mathbb {z} _2 $奇偶校验对称性展示了非本地Majorana边缘模式(MEMS)。值得注意的是,我们发现,与MEMS重叠的任何多Qubit Pauli操作员都表现出均匀的延迟衰减率,与单量的松弛速率相当,而与单量的松弛率相当,而与其大小或组成无关。这种特征使我们能够准确地重建MEMS的指数定位空间概况。此外,由于预脂化机制,发现MEMS对某些对称性噪声具有弹性。我们的工作阐明了固态环境中噪声和对称性保护边缘模式之间的复杂相互作用。
Inherent symmetry of a quantum system may protect its otherwise fragile states. Leveraging such protection requires testing its robustness against uncontrolled environmental interactions. Using 47 superconducting qubits, we implement the one-dimensional kicked Ising model which exhibits non-local Majorana edge modes (MEMs) with $\mathbb{Z}_2$ parity symmetry. Remarkably, we find that any multi-qubit Pauli operator overlapping with the MEMs exhibits a uniform late-time decay rate comparable to single-qubit relaxation rates, irrespective of its size or composition. This characteristic allows us to accurately reconstruct the exponentially localized spatial profiles of the MEMs. Furthermore, the MEMs are found to be resilient against certain symmetry-breaking noise owing to a prethermalization mechanism. Our work elucidates the complex interplay between noise and symmetry-protected edge modes in a solid-state environment.