论文标题

通过学习稀疏表示的双重跳过指南

Dual Skipping Guidance for Document Retrieval with Learned Sparse Representations

论文作者

Qiao, Yifan, Yang, Yingrui, Lin, Haixin, Xiong, Tianbo, Wang, Xiyue, Yang, Tao

论文摘要

本文提出了一种具有混合评分的双重跳过指导方案,以加速使用稀疏表示的文档检索,同时仍提供良好的相关性。该方案同时使用词汇BM25和学习的神经学期权重来绑定和构成候选文档的排名评分,以跳过和最终排名,并在倒置索引遍历期间保持两个Top-K阈值。本文评估了搜索MS MARCO TREC数据集时所提出的方案的时间效率和排名相关性。

This paper proposes a dual skipping guidance scheme with hybrid scoring to accelerate document retrieval that uses learned sparse representations while still delivering a good relevance. This scheme uses both lexical BM25 and learned neural term weights to bound and compose the rank score of a candidate document separately for skipping and final ranking, and maintains two top-k thresholds during inverted index traversal. This paper evaluates time efficiency and ranking relevance of the proposed scheme in searching MS MARCO TREC datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源