论文标题
验证带有固定和配对和匹配的模拟的星系聚类模型:对原始非高斯的应用
Validating galaxy clustering models with Fixed & Paired and Matched-ICs simulations: application to Primordial Non-Gaussianities
论文作者
论文摘要
修复和配对技术旨在通过修改初始条件(ICS)来生成具有降低2分统计方差的模拟。在本文中,我们表明,当初始条件具有局部原始非高斯(PNG)时,该技术也是有效的,该技术由$ f _ {\ rm nl} $参数,而不会偏向2分统计数据,但会大大降低其方差。我们展示了如何定量使用这些技术来测试星系/光晕聚类模型的准确性,以降低不确定性,并将它们应用它们在PNG存在下测试Halo聚类的标准模型。此外,我们表明,通过将两种不同宇宙学(高斯和非高斯)的IC的随机部分匹配,我们获得了(2分)统计量之间的较大相关性,这些相关性可以明确地用于进一步减少模型测试的不确定性。对于我们的参考分析($ f _ {\ rm nl} = 100 $,$ v = 1 [h^{ - 1} {\ rm gpc}]^3 $,$ n = 2.5 \ times 10^{ - 4} { - 4} [h^{h^{ - 1} $σ(f _ {\ rm nl})= 60 $带有标准模拟,而使用固定的[固定对的]初始条件,它将降低至$σ(f _ {\ rm nl})= 12 $ [$σ($σ(f _ {\ rm nl})= 12 $]。当也与IC匹配时,我们将获得$σ(f _ {\ rm nl})= 18 $,对于标准情况,对于$σ(f _ {\ rm nl})= 8 $ [$σ(f _ {\ rm nl})=固定[固定的]。修复,配对和匹配技术的组合可以在PNG的上下文中使用,以在给定的计算资源下以有效的卷为$ \ sim 70 $创建模拟。
The Fix and Pair techniques were designed to generate simulations with reduced variance in the 2-point statistics by modifying the Initial Conditions (ICs). In this paper we show that this technique is also valid when the initial conditions have local Primordial non-Gaussianities (PNG), parametrised by $f_{\rm NL}$, without biasing the 2-point statistics but reducing significantly their variance. We show how to quantitatively use these techniques to test the accuracy of galaxy/halo clustering models down to a much reduced uncertainty and we apply them to test the standard model for halo clustering in the presence of PNG. Additionally, we show that by Matching the stochastic part of the ICs for two different cosmologies (Gaussian and non-Gaussian) we obtain a large correlation between the (2-point) statistics that can explicitly be used to further reduce the uncertainty of the model testing. For our reference analysis ($f_{\rm NL}=100$, $V=1 [h^{-1}{\rm Gpc}]^3$, $n= 2.5\times 10^{-4}[h^{-1}{\rm Mpc}]^{-3}$, $b=2.32$), we obtain an uncertainty of $σ(f_{\rm NL})=60$ with a standard simulation, whereas using Fixed [Fixed-Paired] initial conditions it reduces to $σ(f_{\rm NL})=12$ [$σ(f_{\rm NL})=12$]. When also Matching the ICs we obtain $σ(f_{\rm NL})=18$ for the standard case, and $σ(f_{\rm NL})=8$ [$σ(f_{\rm NL})=7$] for Fixed [Fixed-Paired]. The combination of the Fix, Pair and Match techniques can be used in the context of PNG to create simulations with an effective volume incremented by a factor $\sim 70$ at given computational resources.