论文标题

迅速驾驶在控制权的同时:从哈密顿量到随机动力学的经典捷径

Driving rapidly while remaining in control: classical shortcuts from Hamiltonian to stochastic dynamics

论文作者

Guéry-Odelin, David, Jarzynski, Christopher, Plata, Carlos A., Prados, Antonio, Trizac, Emmanuel

论文摘要

随机热力学制定了一个广泛的框架,以重新审视介观系统各个随机轨迹的热,工作和熵产生的概念。值得注意的是,这种方法依赖于运动的运动方程式,将时间引入了热力学过程的描述中 - 这为精细控制它们开辟了道路。结果,介观系统有限的热力学领域已经开花。在本文中,在介绍了一些根据确定性运动方程式发展的隔离机械系统控制的概念之后,我们通过适当的时间依赖性控制参数/驱动器的适当设计,审查了已开发出的不同策略,以实现过时和失业的状态的有限状态对国家转换。所研究的系统是随机的,由浸入液体中的棕色物体体现。因此,他们与他们的环境紧密相连,扮演了水库的角色。有趣的是,其中一些方法(反向工程,反绝热驾驶,快进)直接受到量子控制中的对应物的启发。该评论还通过储层工程分析了控制。除了从已知的初始状态中给定目标状态的可达到性外,还讨论了最佳路径的问题。在这里定义了最优性,该成本功能是与信息热力学领域密切相关的主题和速度限制问题。另一个自然的扩展讨论了涉及任意状态或非平衡稳态之间的联系。随机热力学中的这种控制领域享有许多应用,从最佳介绍热发动机到生物系统中的人群控制。

Stochastic thermodynamics lays down a broad framework to revisit the venerable concepts of heat, work and entropy production for individual stochastic trajectories of mesoscopic systems. Remarkably, this approach, relying on stochastic equations of motion, introduces time into the description of thermodynamic processes -- which opens the way to fine control them. As a result, the field of finite-time thermodynamics of mesoscopic systems has blossomed. In this article, after introducing a few concepts of control for isolated mechanical systems evolving according to deterministic equations of motion, we review the different strategies that have been developed to realize finite-time state-to-state transformations in both over and underdamped regimes, by the proper design of time-dependent control parameters/driving. The systems under study are stochastic, epitomized by a Brownian object immersed in a fluid; they are thus strongly coupled to their environment playing the role of a reservoir. Interestingly, a few of those methods (inverse engineering, counterdiabatic driving, fast-forward) are directly inspired by their counterpart in quantum control. The review also analyzes the control through reservoir engineering. Besides the reachability of a given target state from a known initial state, the question of the optimal path is discussed. Optimality is here defined with respect to a cost function, a subject intimately related to the field of information thermodynamics and the question of speed limit. Another natural extension discussed deals with the connection between arbitrary states or non-equilibrium steady states. This field of control in stochastic thermodynamics enjoys a wealth of applications, ranging from optimal mesoscopic heat engines to population control in biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源