论文标题

长期时空预测通过动态多圈的注意

Long-term Spatio-temporal Forecasting via Dynamic Multiple-Graph Attention

论文作者

Shao, Wei, Jin, Zhiling, Wang, Shuo, Kang, Yufan, Xiao, Xiao, Menouar, Hamid, Zhang, Zhaofeng, Zhang, Junshan, Salim, Flora

论文摘要

许多现实世界中普遍存在的应用程序,例如停车建议和空气污染监测,都可以从准确的长期时空预测(LSTF)中受益匪浅。 LSTF利用了空间和时间域,上下文信息和数据中固有模式之间的长期依赖性。最近的研究揭示了多绘图神经网络(MGNN)提高预测性能的潜力。但是,由于几个问题,现有的MGNN方法不能直接应用于LSTF:一般性低,不充分使用上下文信息以及不平衡的图形融合方法。为了解决这些问题,我们构建了新的图形模型,以表示每个节点的上下文信息和长期时空数据依赖性结构。为了融合跨多个图形的信息,我们提出了一个新的动态多段融合模块,以通过空间注意力和图形注意机制来表征图中节点的相关性和跨图的节点。此外,我们引入了可训练的重量张量,以指示不同图中每个节点的重要性。在两个大规模数据集上进行的广泛实验表明,我们提出的方法可显着提高LSTF预测任务中现有图形神经网络模型的性能。

Many real-world ubiquitous applications, such as parking recommendations and air pollution monitoring, benefit significantly from accurate long-term spatio-temporal forecasting (LSTF). LSTF makes use of long-term dependency between spatial and temporal domains, contextual information, and inherent pattern in the data. Recent studies have revealed the potential of multi-graph neural networks (MGNNs) to improve prediction performance. However, existing MGNN methods cannot be directly applied to LSTF due to several issues: the low level of generality, insufficient use of contextual information, and the imbalanced graph fusion approach. To address these issues, we construct new graph models to represent the contextual information of each node and the long-term spatio-temporal data dependency structure. To fuse the information across multiple graphs, we propose a new dynamic multi-graph fusion module to characterize the correlations of nodes within a graph and the nodes across graphs via the spatial attention and graph attention mechanisms. Furthermore, we introduce a trainable weight tensor to indicate the importance of each node in different graphs. Extensive experiments on two large-scale datasets demonstrate that our proposed approaches significantly improve the performance of existing graph neural network models in LSTF prediction tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源