论文标题

TerrainMesh:使用关节2D-3D学习从空中图像中重建度量的指标语义地形重建

TerrainMesh: Metric-Semantic Terrain Reconstruction from Aerial Images Using Joint 2D-3D Learning

论文作者

Feng, Qiaojun, Atanasov, Nikolay

论文摘要

本文考虑使用从航空车辆获得的RGB图像考虑室外地形映射。尽管基于功能的本地化和映射技术可提供实时车辆的探光仪以及稀疏的关键点深度重建,但通常通过大量的计算和存储来恢复环境几何和语义(植被,建筑物等)的密集模型(植被,建筑物等)。本文开发了一种联合2D-3D学习方法,可以在每个摄像机的键盘上重建一个由视觉填充算法维护的局部指标网格。鉴于估计的摄像头轨迹,可以将本地网格组装到全球环境模型中,以捕获在线操作期间的地形拓扑和语义。使用初始化和改进阶段重建本地网格。在初始化阶段,我们通过解决最小二乘问题的问题来估计网格顶点抬高,从而将顶点barycentric坐标与稀疏关键点的深度测量结果相关联。在改进阶段,我们使用摄像头投影将2D图像和语义特征与3D网格顶点相关联,并应用图形卷积以根据关节2D和3D监督来完善网格顶点空间坐标和语义特征。使用真实航空图像的定量和定性评估显示了我们方法支持环境监测和监视应用的潜力。

This paper considers outdoor terrain mapping using RGB images obtained from an aerial vehicle. While feature-based localization and mapping techniques deliver real-time vehicle odometry and sparse keypoint depth reconstruction, a dense model of the environment geometry and semantics (vegetation, buildings, etc.) is usually recovered offline with significant computation and storage. This paper develops a joint 2D-3D learning approach to reconstruct a local metric-semantic mesh at each camera keyframe maintained by a visual odometry algorithm. Given the estimated camera trajectory, the local meshes can be assembled into a global environment model to capture the terrain topology and semantics during online operation. A local mesh is reconstructed using an initialization and refinement stage. In the initialization stage, we estimate the mesh vertex elevation by solving a least squares problem relating the vertex barycentric coordinates to the sparse keypoint depth measurements. In the refinement stage, we associate 2D image and semantic features with the 3D mesh vertices using camera projection and apply graph convolution to refine the mesh vertex spatial coordinates and semantic features based on joint 2D and 3D supervision. Quantitative and qualitative evaluation using real aerial images show the potential of our method to support environmental monitoring and surveillance applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源