论文标题

在几分钟内标记牛群:单个荷斯坦 - 弗里斯牛身份证

Label a Herd in Minutes: Individual Holstein-Friesian Cattle Identification

论文作者

Gao, Jing, Burghardt, Tilo, Campbell, Neill W.

论文摘要

我们描述了一种实际评估的方法,用于训练整个农场的视觉牛ID系统,只需要十分钟的标签工作。特别是,为了在现实世界中自动识别单个荷斯坦 - 弗里斯人的任务,我们表明,自学,公制学习,集群分析和主动学习可以相互补充,以显着减少训练牛识别框架所需的注释要求。评估公开可用Cows2021数据集的测试部分的方法,对于培训,我们在435个单独的单独踪迹中使用了23,350帧,该轨迹由自动化的牛群检测和操作农场镜头中的自动化牛检测和跟踪。自我监管的度量学习首先是用来初始化候选身份空间的,在该空间中,每个曲目都被认为是一个独特的实体。然后,通过群集分析和主动学习来进行自动合并,将实体分为代表牛身份的等效类别。至关重要的是,我们确定了自动选择无法根据人干预来复制改进的拐点,以将注释减少到最低。实验结果表明,自动化自动化后的聚类分析和几分钟的标记可以提高153个身份的测试识别准确性,从74.9%(ARI = 0.754)从自我审议中获得的74.9%(ARI = 0.754)提高了92.44%(ARI = 0.93)。这些有希望的结果表明,在视觉牛ID管道中人类和机器推理的量身定制的组合可能是非常有效的,而只需要最少的标签工作。我们提供本文提供所有关键的源代码和网络权重,以简化结果复制。

We describe a practically evaluated approach for training visual cattle ID systems for a whole farm requiring only ten minutes of labelling effort. In particular, for the task of automatic identification of individual Holstein-Friesians in real-world farm CCTV, we show that self-supervision, metric learning, cluster analysis, and active learning can complement each other to significantly reduce the annotation requirements usually needed to train cattle identification frameworks. Evaluating the approach on the test portion of the publicly available Cows2021 dataset, for training we use 23,350 frames across 435 single individual tracklets generated by automated oriented cattle detection and tracking in operational farm footage. Self-supervised metric learning is first employed to initialise a candidate identity space where each tracklet is considered a distinct entity. Grouping entities into equivalence classes representing cattle identities is then performed by automated merging via cluster analysis and active learning. Critically, we identify the inflection point at which automated choices cannot replicate improvements based on human intervention to reduce annotation to a minimum. Experimental results show that cluster analysis and a few minutes of labelling after automated self-supervision can improve the test identification accuracy of 153 identities to 92.44% (ARI=0.93) from the 74.9% (ARI=0.754) obtained by self-supervision only. These promising results indicate that a tailored combination of human and machine reasoning in visual cattle ID pipelines can be highly effective whilst requiring only minimal labelling effort. We provide all key source code and network weights with this paper for easy result reproduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源