论文标题
零击查询上下文化用于对话搜索
Zero-shot Query Contextualization for Conversational Search
论文作者
论文摘要
当前的对话通过检索系统通过使用中间查询分辨率步骤将对话搜索施放到临时搜索中,该步骤将用户的问题置于对话的背景下。尽管所提出的方法已被证明有效,但他们仍然假设大规模问题解决和对话搜索数据集的可用性。为了放弃对此类数据的可用性的依赖性,我们将预先训练的令牌级密集的猎犬适应临时搜索数据,以执行对话搜索,而无需其他微调。所提出的方法允许在对话历史记录中将用户问题上下文化,但仅限制问题和潜在答案之间的匹配。我们的实验证明了拟议方法的有效性。我们还进行了一项分析,该分析提供了有关上下文化在潜在空间中如何工作的见解,从本质上讲,从对话中引入了对显着性术语的偏见。
Current conversational passage retrieval systems cast conversational search into ad-hoc search by using an intermediate query resolution step that places the user's question in context of the conversation. While the proposed methods have proven effective, they still assume the availability of large-scale question resolution and conversational search datasets. To waive the dependency on the availability of such data, we adapt a pre-trained token-level dense retriever on ad-hoc search data to perform conversational search with no additional fine-tuning. The proposed method allows to contextualize the user question within the conversation history, but restrict the matching only between question and potential answer. Our experiments demonstrate the effectiveness of the proposed approach. We also perform an analysis that provides insights of how contextualization works in the latent space, in essence introducing a bias towards salient terms from the conversation.