论文标题

半竞争风险数据的边际结构疾病死亡模型

Marginal Structural Illness-Death Models for Semi-Competing Risks Data

论文作者

Zhang, Yiran, Ying, Andrew, Edland, Steve, White, Lon, Xu, Ronghui

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The three state illness death model has been established as a general approach for regression analysis of semi competing risks data. For observational data the marginal structural models (MSM) are a useful tool, under the potential outcomes framework to define and estimate parameters with causal interpretations. In this paper we introduce a class of marginal structural illness death models for the analysis of observational semi competing risks data. We consider two specific such models, the Markov illness death MSM and the frailty based Markov illness death MSM. For interpretation purposes, risk contrasts under the MSMs are defined. Inference under the illness death MSM can be carried out using estimating equations with inverse probability weighting, while inference under the frailty based illness death MSM requires a weighted EM algorithm. We study the inference procedures under both MSMs using extensive simulations, and apply them to the analysis of mid life alcohol exposure on late life cognitive impairment as well as mortality using the Honolulu Asia Aging Study data set. The R codes developed in this work have been implemented in the R package semicmprskcoxmsm that is publicly available on CRAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源