论文标题

转移和复制对称性破坏

Metastates and Replica Symmetry Breaking

论文作者

Newman, C. M., Read, N., Stein, D. L.

论文摘要

在这篇综述中,我们定义和讨论转移,具有一般适用于热力学系统的数学工具,这些工具在使用无效或不均匀的短距离系统时特别有用。在无限的系统中,可能存在许多相互竞争的热力学状态,这可能会导致局部相关函数的直接热力学极限。转移是对无限 - 体积热力学状态的概率度量,该状态恢复了这些状态和吉布斯国家之间在有限体积中观察到的连接。在引入了基本转移并讨论它们的特性之后,我们提出了旋转玻璃相的可能场景,并讨论了转移方法揭示了有关复制对称性破裂将如何在有限的二维短距离旋转玻璃中表现出来的。

In this review we define and discuss metastates, mathematical tools with general applicability to thermodynamic systems which are particularly useful when working with disordered or inhomogeneous short-range systems. In an infinite such system there may be many competing thermodynamic states, which can lead to the absence of a straightforward thermodynamic limit of local correlation functions. A metastate is a probability measure on the infinite-volume thermodynamic states that restores the connection between those states and the Gibbs states observed in finite volumes. After introducing the basic metastates and discussing their properties, we present possible scenarios for the spin-glass phase and discuss what the metastate approach reveals about how replica symmetry breaking would manifest itself in finite-dimensional short-range spin glasses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源