论文标题

加密货币市场预测的社交媒体情感分析

Social Media Sentiment Analysis for Cryptocurrency Market Prediction

论文作者

Raheman, Ali, Kolonin, Anton, Fridkins, Igors, Ansari, Ikram, Vishwas, Mukul

论文摘要

在本文中,我们使用加密货币领域作为参考,探讨了对金融市场预测应用于金融市场预测的社交媒体情绪分析的不同自然语言处理模型的可用性。我们研究不同的情感指标与比特币的价格变动如何相关。为此,我们探索了不同的方法来计算文本中的情感指标,这些方法在此预测任务中发现其中大多数不是很准确。我们发现,其中一种模型的表现优于其他20多个公共模型,并且可以将其有效地调整为可解释的性质。因此,我们确认可解释的人工智能和自然语言处理方法实际上可能比不可解释和不可解释的方法更有价值。最后,我们分析了不同情绪指标与价格变动之间的潜在因果关系。

In this paper, we explore the usability of different natural language processing models for the sentiment analysis of social media applied to financial market prediction, using the cryptocurrency domain as a reference. We study how the different sentiment metrics are correlated with the price movements of Bitcoin. For this purpose, we explore different methods to calculate the sentiment metrics from a text finding most of them not very accurate for this prediction task. We find that one of the models outperforms more than 20 other public ones and makes it possible to fine-tune it efficiently given its interpretable nature. Thus we confirm that interpretable artificial intelligence and natural language processing methods might be more valuable practically than non-explainable and non-interpretable ones. In the end, we analyse potential causal connections between the different sentiment metrics and the price movements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源