论文标题

冠状动脉动脉的血管内光学相干断层扫描图像中纤维帽的自动分析

Automated analysis of fibrous cap in intravascular optical coherence tomography images of coronary arteries

论文作者

Lee, Juhwan, Pereira, Gabriel T. R., Gharaibeh, Yazan, Kolluru, Chaitanya, Zimin, Vladislav N., Dallan, Luis A. P., Kim, Justin N., Hoori, Ammar, Al-Kindi, Sadeer G., Guagliumi, Giulio, Bezerra, Hiram G., Wilson, David L.

论文摘要

薄型纤维瘤(TCFA)和斑块破裂已被认为是血栓形成和急性冠状动脉综合征的最常见危险因素。血管内光学相干断层扫描(IVOCT)可以识别TCFA并评估帽厚度,这提供了评估斑块脆弱性的机会。我们开发了一种自动化方法,该方法可以检测脂质斑块并评估IVOCT图像中的纤维帽厚度。这项研究分析了41例患者中77个病变的4,360个IVOCT图像框架。为了提高分割性能,预处理包括管腔分割,像素移动和噪声滤波在原始极性(R,Theta)IVOCT图像上。我们使用DeepLab-V3加上深度学习模型来对脂质斑块像素进行分类。脂质检测后,我们使用特殊的动态编程算法自动检测到纤维盖的外边框,并评估盖厚度。我们的方法提供了脂质斑块的出色可区分性,灵敏度为85.8%,A线骰子系数为0.837。通过在自动软件编辑后比较两个分析师之间的脂质角度测量值,我们发现了Bland-Altman分析的良好一致性(差异6.7 +/- 17度;平均196度)。我们的方法准确地检测到了检测到的脂质斑块的纤维帽。自动分析仅需要对5.5%的帧进行重大修改。此外,我们的方法表明了两个分析师之间通过平淡的altman分析(4.2 +/- 14.6微米;平均175微米)之间的纤维帽厚度一致,表明用户之间的偏见很小,测量的可重复性良好。我们开发了一种用于IVOCT图像中纤维帽定量的全自动方法,从而与分析师的确定良好一致。该方法具有极大的潜力,可以实现对TCFA的高度自动化,可重复和全面评估。

Thin-cap fibroatheroma (TCFA) and plaque rupture have been recognized as the most frequent risk factor for thrombosis and acute coronary syndrome. Intravascular optical coherence tomography (IVOCT) can identify TCFA and assess cap thickness, which provides an opportunity to assess plaque vulnerability. We developed an automated method that can detect lipidous plaque and assess fibrous cap thickness in IVOCT images. This study analyzed a total of 4,360 IVOCT image frames of 77 lesions among 41 patients. To improve segmentation performance, preprocessing included lumen segmentation, pixel-shifting, and noise filtering on the raw polar (r, theta) IVOCT images. We used the DeepLab-v3 plus deep learning model to classify lipidous plaque pixels. After lipid detection, we automatically detected the outer border of the fibrous cap using a special dynamic programming algorithm and assessed the cap thickness. Our method provided excellent discriminability of lipid plaque with a sensitivity of 85.8% and A-line Dice coefficient of 0.837. By comparing lipid angle measurements between two analysts following editing of our automated software, we found good agreement by Bland-Altman analysis (difference 6.7+/-17 degree; mean 196 degree). Our method accurately detected the fibrous cap from the detected lipid plaque. Automated analysis required a significant modification for only 5.5% frames. Furthermore, our method showed a good agreement of fibrous cap thickness between two analysts with Bland-Altman analysis (4.2+/-14.6 micron; mean 175 micron), indicating little bias between users and good reproducibility of the measurement. We developed a fully automated method for fibrous cap quantification in IVOCT images, resulting in good agreement with determinations by analysts. The method has great potential to enable highly automated, repeatable, and comprehensive evaluations of TCFAs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源