论文标题
涉及$ \ binom ak^m $的总和
Supercongruences for sums involving $\binom ak^m$
论文作者
论文摘要
让$ p $是一个奇怪的素数,让$ a $为有理$ p $ - ad-adic整数,$ a \ a \ not \ equiv 0 \ pmod p $。在本文中,使用WZ方法,我们建立了$ \ sum_ {k = 0}^{p-1} \ binom ak^2(-1)^k(1- \ frac 2ak)$ \ binoM $ p^2 $和$ p^2 $和$ \ sum_ { $ p^4 $,其中$ r \ in \ {3,4 \} $和$ s \ in \ {1,3 \} $。
Let $p$ be an odd prime, and let $a$ be a rational $p$-adic integer with $a\not\equiv 0\pmod p$. In this paper, using WZ method we establish the congruences for $\sum_{k=0}^{p-1} \binom ak^2(-1)^k(1-\frac 2ak)$ modulo $p^2$ and $\sum_{k=0}^{p-1} \binom ak^r(1-\frac 2ak)^s$ modulo $p^4$, where $r\in\{3,4\}$ and $s\in\{1,3\}$.