论文标题

使用具有快速卷积层的复发神经网络进行物理建模

Physical Modeling using Recurrent Neural Networks with Fast Convolutional Layers

论文作者

Parker, Julian D., Schlecht, Sebastian J., Rabenstein, Rudolf, Schäfer, Maximilian

论文摘要

声学,机械和电气系统的离散时间建模是音乐信号处理文献中的重要主题。这样的模型主要是通过使用已建立的技术在普通或部分微分方程方面给出的数学模型来得出的。最近的工作已经应用了机器学习的技术来自动从数据的情况下自动构建此类模型,这些系统已将标量值(例如电路)描述的态度集中。在这项工作中,我们研究了类似的技术如何构建具有空间分布而不是集体状态的系统模型。我们描述了几种新型的复发性神经网络结构,并展示如何将它们视为模态技术的扩展。作为概念证明,我们为三个物理系统生成合成数据,并表明可以使用此数据培训所提出的网络结构以重现这些系统的行为。

Discrete-time modeling of acoustic, mechanical and electrical systems is a prominent topic in the musical signal processing literature. Such models are mostly derived by discretizing a mathematical model, given in terms of ordinary or partial differential equations, using established techniques. Recent work has applied the techniques of machine-learning to construct such models automatically from data for the case of systems which have lumped states described by scalar values, such as electrical circuits. In this work, we examine how similar techniques are able to construct models of systems which have spatially distributed rather than lumped states. We describe several novel recurrent neural network structures, and show how they can be thought of as an extension of modal techniques. As a proof of concept, we generate synthetic data for three physical systems and show that the proposed network structures can be trained with this data to reproduce the behavior of these systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源