论文标题
GAF-NAU:Gramian Angular Field编码的邻里注意力U-NET,用于像素的高光谱图像分类
GAF-NAU: Gramian Angular Field encoded Neighborhood Attention U-Net for Pixel-Wise Hyperspectral Image Classification
论文作者
论文摘要
高光谱图像(HSI)分类是高光谱群落中最活跃的研究领域,因为HSI中包含的丰富光谱信息可以极大地帮助识别感兴趣的对象。但是,材料与相应光谱曲线之间的固有非线性在HSI分类中带来了两个主要挑战:类间相似性和类内变异性。许多先进的深度学习方法试图从基于区域/补丁的方法的角度来解决这些问题,而不是基于像素的替代方案。但是,基于补丁的方法假设固定空间窗口中目标像素的邻域像素属于同一类。这个假设并不总是正确的。为了解决这个问题,我们在这里提出了一种新的深度学习体系结构,即基于像素的HSI分类,即Gramian Angular Field编码邻里注意U-NET(GAF-NAU)。所提出的方法不需要以原始目标像素为中心的区域或斑块来执行基于2D-CNN的分类,而是我们的方法将HSI中的1D像素向量转换为使用Gramian Angular Field(GAF)的2D角特征空间,然后将其嵌入到新的社区注意网络中,以抑制不相关的角度角度,同时抑制了无用的特征。三个公开可用的HSI数据集的评估结果证明了该模型的出色性能。
Hyperspectral image (HSI) classification is the most vibrant area of research in the hyperspectral community due to the rich spectral information contained in HSI can greatly aid in identifying objects of interest. However, inherent non-linearity between materials and the corresponding spectral profiles brings two major challenges in HSI classification: interclass similarity and intraclass variability. Many advanced deep learning methods have attempted to address these issues from the perspective of a region/patch-based approach, instead of a pixel-based alternate. However, the patch-based approaches hypothesize that neighborhood pixels of a target pixel in a fixed spatial window belong to the same class. And this assumption is not always true. To address this problem, we herein propose a new deep learning architecture, namely Gramian Angular Field encoded Neighborhood Attention U-Net (GAF-NAU), for pixel-based HSI classification. The proposed method does not require regions or patches centered around a raw target pixel to perform 2D-CNN based classification, instead, our approach transforms 1D pixel vector in HSI into 2D angular feature space using Gramian Angular Field (GAF) and then embed it to a new neighborhood attention network to suppress irrelevant angular feature while emphasizing on pertinent features useful for HSI classification task. Evaluation results on three publicly available HSI datasets demonstrate the superior performance of the proposed model.