论文标题

与现实观察者变化的轮廓生成

Contour Generation with Realistic Inter-observer Variation

论文作者

Osorio, Eliana Vásquez, Shortall, Jane, Robbins, Jennifer, van Herk, Marcel

论文摘要

轮廓用于放射疗法治疗计划中,以识别要保留的高剂量和区域辐射的区域。因此,任何轮廓不确定性都会影响整个处理。即使使用日常IGRT或适应时,这是剩余的不确定性来源,但在治疗计划中尚未对其进行定量考虑。使用概率计划可以直接考虑计划优化中的不确定性。第一步是创建一种算法,该算法可以生成许多逼真的轮廓,这些轮廓具有与实际观察者间变化相匹配的变化。 我们提出了一种基于测量的空间观察者变化,IOV和一个单个参数,该方法可以生成随机轮廓,该方法控制其几何依赖性:alpha,Alpha,3D高斯用作点扩散功能(PSF)的3D高斯宽度。我们使用了中位形状的水平设置公式,其级别设置函数定义为签名的距离变换。为了创建一个新的轮廓,我们添加了中位级别集和一个用IOV映射加权的噪声图,然后与PSF进行了卷积。阈值级别设置函数重建新生成的轮廓。 我们使用了来自金图集的18例患者的数据,其中包括T2-W MRI扫描上的5个前列腺划定。为了评估轮廓之间的相似性,我们使用理想剂量分布计算了与中位形状(MAXDTA)(MAXDTA)(MAXDTA)的最大距离(MAXDTA)。我们使用了两个样本的Kolmogorov-Smirnov测试来比较生成的和手动描绘的轮廓之间的MaxDTA和Mindose分布。 只有alpha = 0.75厘米,产生了与手动描绘的结构没有显着差异的MaxDTA和Mindose分布。核算PSF对于正确模拟观察者间变化至关重要。

Contours are used in radiotherapy treatment planning to identify regions to be irradiated with high dose and regions to be spared. Therefore, any contouring uncertainty influences the whole treatment. Even though this is the biggest remaining source of uncertainty when daily IGRT or adaptation is used, it has not been accounted for quantitatively in treatment planning. Using probabilistic planning allows to directly account for contouring uncertainties in plan optimisation. The first step is to create an algorithm that can generate many realistic contours with variation matching actual inter-observer variation. We propose a methodology to generate random contours, based on measured spatial inter-observer variation, IOV, and a single parameter that controls its geometrical dependency: alpha, the width of the 3D Gaussian used as point spread function (PSF). We used a level set formulation of the median shape, with the level set function defined as the signed distance transform. To create a new contour, we added the median level set and a noise map which was weighted with the IOV map and then convolved with the PSF. Thresholding the level set function reconstructs the newly generated contour. We used data from 18 patients from the golden atlas, consisting of five prostate delineations on T2-w MRI scans. To evaluate the similarity between the contours, we calculated the maximum distance to agreement to the median shape (maxDTA), and the minimum dose of the contours using an ideal dose distribution. We used the two-sample Kolmogorov-Smirnov test to compare the distributions for maxDTA and minDose between the generated and manually delineated contours. Only alpha=0.75cm produced maxDTA and minDose distributions that were not significantly different from the manually delineated structures. Accounting for the PSF is essential to correctly simulate inter-observer variation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源