论文标题
外球星的大型干涉仪(寿命):V。中红外空间攻击仪研究地球类似物的诊断潜力
Large Interferometer For Exoplanets (LIFE): V. Diagnostic potential of a mid-infrared space-interferometer for studying Earth analogs
论文作者
论文摘要
超级运动学的一个重要未来目标是检测和表征潜在的可居住行星。使用无效的干涉法,生命将使我们能够限制(陆地)系外行星的半径和有效温度,并提供有关其大气结构和组成的独特信息。我们探讨了生命在表征地球在其进化的各个阶段表征地球的发射光谱的潜力。我们在8种不同场景的模拟光谱上进行贝叶斯检索,这对应于地球进化的四个不同时期的无云和多云的光谱。假设有10个PC和一个类似太阳的宿主星,我们使用其模拟器寿命来模拟生命获得的观测值,考虑到所有主要的天体物理噪声源。使用标称光谱分辨率(r = 50)和信噪比(假定为11.2 $ $ m $ m),我们可以确定所有分析的场景的主要光谱特征(最著名的是co $ _2 $,H $ _2 $ _2 $ o,o $ $ $ $ _3 $,ch $ _4 $)。这使我们能够区分居住和无生命的场景。结果表明,尤其是o $ _3 $和ch $ _4 $,通过将S/n从10到20增加一倍的丰富度估计值。我们得出的结论是,R和S/N的基线要求足以终生检测O $ _3 $和CH $ _4 $在类似地球的Planet的氛围中,其含量为O $ _2%$ _2%$ _2%$ _2%$ 2%。此信息与生活任务计划有关。我们还得出结论,可以使用无云的云行星检索来表征陆地宜居行星的大气成分,而不是大气的热结构。从进行的模型比较中,我们推断出不透明度表中的差异(例如不同的线翼处理引起)可能是系统误差的重要来源。
An important future goal in exoplanetology is to detect and characterize potentially habitable planets. Using nulling interferometry, LIFE will allow us to constrain the radius and effective temperature of (terrestrial) exoplanets, as well as provide unique information about their atmospheric structure and composition. We explore the potential of LIFE in characterizing emission spectra of Earth at various stages of its evolution. We perform Bayesian retrievals on simulated spectra of 8 different scenarios, which correspond to cloud-free and cloudy spectra of four different epochs of the evolution of the Earth. Assuming a distance of 10 pc and a Sun-like host star, we simulate observations obtained with LIFE using its simulator LIFEsim, considering all major astrophysical noise sources. With the nominal spectral resolution (R=50) and signal-to-noise ratio (assumed to be S/N=10 at 11.2 $μ$m), we can identify the main spectral features of all the analyzed scenarios (most notably CO$_2$, H$_2$O, O$_3$, CH$_4$). This allows us to distinguish between inhabited and lifeless scenarios. Results suggest that particularly O$_3$ and CH$_4$ yield an improved abundance estimate by doubling the S/N from 10 to 20. We conclude that the baseline requirements for R and S/N are sufficient for LIFE to detect O$_3$ and CH$_4$ in the atmosphere of an Earth-like planet with an abundance of O$_2$ of around 2% in volume mixing ratio. This information is relevant in terms of the LIFE mission planning. We also conclude that cloud-free retrievals of cloudy planets can be used to characterize the atmospheric composition of terrestrial habitable planets, but not the thermal structure of the atmosphere. From the inter-model comparison performed, we deduce that differences in the opacity tables (caused by e.g. a different line wing treatment) may be an important source of systematic errors.