论文标题

带有图形卷积网络的域不变模型用于乳房X线照片分类

Domain Invariant Model with Graph Convolutional Network for Mammogram Classification

论文作者

Wang, Churan, Li, Jing, Sun, Xinwei, Zhang, Fandong, Yu, Yizhou, Wang, Yizhou

论文摘要

由于其至关重要的特性,需要基于图像的诊断来实现分布(OOD)样品的鲁棒性。实现这一目标的一种自然方法是仅捕获与临床疾病相关的特征,该特征由宏观属性(例如边缘,形状)和基于微观图像的特征(例如,与病变相关的区域)组成。然而,这种与疾病相关的特征通常与学习过程中的数据依赖性(但疾病无关)相互交织,从而使OOD泛化破坏了。为了解决这个问题,我们提出了一个具有图形卷积网络(DIM-GCN)的新型框架,即不变的模型,该模型仅利用来自多个领域的不变性疾病相关特征。具体而言,我们首先提出了一个贝叶斯网络,该网络将潜在变量明确分解为与疾病相关的和其他疾病 - 肉食的部分,这些部分可证明可以彼此分离。在此的指导下,我们根据各种自动编码器重新重新制定了目标函数,其中每个域中的编码器都有两个分支:与域无关和依赖性的分支,它们分别编码了与疾病相关的和-irretrelevant的特征。为了更好地捕获宏观特征,我们通过图形卷积网络(GCN)利用观察到的临床属性作为重建的目标。最后,我们仅实施与疾病相关的预测特征。我们方法的有效性和实用性是通过在乳房X光检查良性/恶性诊断上的上等OOD概括性能证明的。

Due to its safety-critical property, the image-based diagnosis is desired to achieve robustness on out-of-distribution (OOD) samples. A natural way towards this goal is capturing only clinically disease-related features, which is composed of macroscopic attributes (e.g., margins, shapes) and microscopic image-based features (e.g., textures) of lesion-related areas. However, such disease-related features are often interweaved with data-dependent (but disease irrelevant) biases during learning, disabling the OOD generalization. To resolve this problem, we propose a novel framework, namely Domain Invariant Model with Graph Convolutional Network (DIM-GCN), which only exploits invariant disease-related features from multiple domains. Specifically, we first propose a Bayesian network, which explicitly decomposes the latent variables into disease-related and other disease-irrelevant parts that are provable to be disentangled from each other. Guided by this, we reformulate the objective function based on Variational Auto-Encoder, in which the encoder in each domain has two branches: the domain-independent and -dependent ones, which respectively encode disease-related and -irrelevant features. To better capture the macroscopic features, we leverage the observed clinical attributes as a goal for reconstruction, via Graph Convolutional Network (GCN). Finally, we only implement the disease-related features for prediction. The effectiveness and utility of our method are demonstrated by the superior OOD generalization performance over others on mammogram benign/malignant diagnosis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源