论文标题
完整多明图的相互距离能量
Reciprocal distance energy of complete multipartite graphs
论文作者
论文摘要
在本文中,首先,我们在某些情况下计算特殊分区基质的能量。结果,我们获得了完整多部分图的相互距离能量,并且还提供了完整多部分图的各种其他能量。接下来,我们表明,在n个顶点上的所有完整的k-partite图中,完整的拆分图具有最小的相互距离能,而互惠距离的能量对于Turan图最大。最后,结果表明,如果2 \ le m \ le 7,则完整两部分图KM的相互距离能量在边缘的删除下减小,而如果8 \ le m,则相互距离的能量增加。另外,我们表明完整三方图的相互距离能在边缘删除下不会增加
In this paper, first we compute the energy of a special partitioned matrix under some cases. As a consequence, we obtain the reciprocal distance energy of the complete multipartite graph and also we give various other energies of complete multipartite graphs. Next, we show that among all complete k-partite graphs on n vertices, the complete split graph has minimum reciprocal distance energy and the reciprocal distance energy is maximum for the Turan graph. At last, it is shown that the reciprocal distance energy of the complete bipartite graph km,m decreases under deletion of an edge if 2\le m\le 7, whereas the reciprocal distance energy increases if 8 \le m. Also, we show that the reciprocal distance energy of the complete tripartite graph does not increase under edge deletion